
AD-A275 989

* IIlllli~ll• :

OTIC
ELIECT

A COMPARATIVE STUDY OF WHAT THE
MODELS ESTIMATE

THESIS

George A. Coggins, Captain, USAF
Roy C. Russell, Captain, USAF

AFIT/GCA/LAS/93S-4

""405519 QUALITY

DEPARTMENT OF THi AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

,4 2 18 11,7
I,: , _ ., - -- • , ;, - -• -T • .• •• . .. • • •- .. . , ,_ _ • = .

AFIT/GCA/LAS/93S-4

1)I

SOFTWNARE COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF WHAT THE ~ z~c

MODELS ESTIMATE ..

NTIS i

THESIS DuGC li"'

George A. Coggins, Captain, USAF jI' I,

Roy C. Russell, Captain, USAF B
AFITIGCAIL-AS/93S-4........

Approved for public release; distribution unlimited

The views expressed in this thesits are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

*1

AFIT/GCAILAS/93S-4

SOFTWARE COST ESTIMATING MODELS:

A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

THESIS

Presented to the Faculty of the School of Logistics and Acquisition Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Cost Analysis

George A. Coggins, B.S. Roy C. Russell, B.S.

Captain, USAF Captain, USAF

September 1993

Approvod for public release; distribution unlimited

Acknowledgements

This research effort could not have been completed without the

assistance of several key individuals. We would like to take this opportunity to

acknowledge these people.

We would like to thank Ray Kile for his thoughtful insights regarding

REVIC and Richard Maness of Martin Marietta for his assistance with SASET.

Our thanks to Wellington Kao, Karen McRitchie, and Dan Gallorath of SEER

Technolog-es for helping us understand SEER-SEM and to Jim Otte of PRICE

Systems for his help with PRICE-S. It would have been impossible to complete

this document without their assistance and patience in answering countless

qtuestions about their respective models. We thank our thesis advisor, Dan

Ferens, for providing guidance and frequent feedback during this effort.

Finally, we would like to thank our wives and families for putting up with
their "absentee husbands". Chris thanks his wife, Lara, and daughter, Chelsea,

for their andless support and understanding. Andy thanks hNs wife, Debbie, and

daughter, Jordan, for understanding the many times he couldn't be with them.

We couldn't have done it without you.

Andy Coggins and Chris Russell

I/

ii/

Table of Contents

Page
Acknowledgements .. ii

List of Figures ... v

List of Tables ... vii

Abstract ix

I. Introduction .. 1

General Issue .. 1
Specific Problem .. 3
Research Objective ... 4
Scope of Research 4
D e fin itio n s 52Thesis Structure...................................... , .. 7

II. Literature Review .. 9

O ve rv ie w ... 9
Software Development Issues ... 9

Ever-increasing Size and Complexity ... 9
Software Sizing Problems .. 11
Changing Requirements and Specifications 13

Normalization Explained 14
Cost Model Descriptions ... 15

REVIC .. 15
SASET .. 17
PRICE-S ... 18
SEER-SEM ... 20

Summary ... 21

Ill. Methodology ... 22

Overview 22
Phase 1: independent Analysis 22

SPhase 2: Validation and Concurrence .. 24

io

II
~Page

IV . F in d in g s 2g

Finding #1. So~tware Deve!opment Phaies 26
Finding #2. Development AXtivit'es and Cost Elements 38
Finding #3. Source Lines of Code and Language DiffiŽrences 47
Finding #4. Key Model Attributes and Key Cost Drivers 54
Finding #5. Implications ot Project Size on Model Output 57
Finding #6. Impact of Schedule Compression and Extensions 80
"Finding V7. Distinctive Characteristics of Model Data Bases 88

; Finding #8. Results of Baseline Test Case ... 91

V. Conclusions and Recommendations 100

"O verview .. 100
C o n clu sio n s 10 0
R ecom m endations 102

Appendix A: Checklist Used to Examine Cost Models........................... 104

*Appendix B: Model Inputs Sheets for the Baseline Test Clase................... 107

B ibliographye 154

Vit 158

iiII

List of Figures

Page
1-1 Distribution of Software and Hardware Costs .. 2

2-1 Effect of Adding Personnel to a Software Project 11

4-1 Ripple Effect for Calculating Activity Estimates 32

4-2 Example of PRICE-S Report with Cost Elements 45

4-3 Example of SEER-SEM, ver 3.21 Report with L3bor Categories 46
4-4 Sample Ada and Assembly Program Operation 47

4-5 Impact of REVIC Inputs for Personnel Capabilities anj Experience 56

4-6 Impact of REVIC Inputs for Development Environment 57

4-7 Impact of REVIC Inputs for Target Environment 57
4-8 Impact of REVIC Inputs for Project Requirements 58

4-9 Effect of Application on Cost for PRICE-S .. 61

4-10 Effect of New Design on Cost for PRICE-S .. 61

4-11 Effect of New Code on Cost for PRICE-S .. 62

4-12 Effect of Productivity Factor on Cost for PRICE-S 62

4-13 Effect of Platform on Cost for PRICE-S .. 63

4-14 Effect of Complexity on Cost for PRICE-S .. 63

4-15 Technology and Environment Impacts for SEER-SEM 64

4-16 Impact of SEER-SEM Inputs for Personnel Capabilities and
E xp e rie nce 6 5

4-17 Imnpnt of RFFR-SFM Inputs for Development Envirofnment 65

4-18 Impact of SEER-SEM Inputs for Target Environment 66

4-19 Impact of SEER-SEM Inputs for Project Requirements 66

4-20 Functional Relationship Between Size and Effort for REVIC 69

4-21 Functional Relationship Between Size and Effort for Various
Software Types in SASET .. 72

I V

Page
4-22 Functional Relationship Between Size and Effort for Various

Software Classes in SASET .. 72

4-23 Functional Relationship Retween Size and Effort for SEER-SEM 78

4-24 Schedule Penalty Factors for SASET ... 83

4-25 Effect of Schedule Constraints on Cost for PRICE-S 85

!vi

List of Tables

Page
2-1 Examples of Software Content in Recent Projects 10

2-2 REVIC Parameters by Category .. 16

2-3 PRICE-S Input Variables ... 19

4-1 DoD-STD-2167A Phases/Activities and Key Formal Reviews or
A u d its 2 6

4-2 Correlation Matrix of Softwai-e Development Phases 27

4-3 Defau!t Allocation Percentages for REVIC Development Phases 29

4-4 Default Allocation Percentages for SASET Development Phases 30

4-5 Default Allocation Percentages for SEER-SEM Platform Knowledge
B a se 3 4

4-6 Default Allocation Percentages for SEER-SEM Development

M ethod Know ledge Base .. 35

4-7 Allocation Porcentages for SEER-SEM Development Phases 36

4-8 Descriptions of SEER-SEM's Development Methods 36

4-9 General Development Activities included in Model Estimates 38

4-10 Specific Cost Elements/Activities Estimated by Each Model 39

4-11 REVIC Cost Elements and Definitions ... 40

4-12 Default Al!ocation Percentages for REVIC's Activities 41

4-13 SASET Cost Elements and Definitions ... 42

4-14 PRICE-S Cost Elements and Definitions .. 44

4-151I IOf3 SCA-SE Cost Element I Deintons.... I 4

4-16 Sample SASET Calculations for New HOL Equivalent SLOC 50

4-17 Language Selections within PRICE-S .. 52

4-18 Language Selecti,)ns within SEER-SEM 53

4-19 Categorization of Key Model Attributes ... 55

4-20 Default Values for SASET Software Types .. 59

vii

I/" ' -:TF _ [.. ... "['''" "•-" U-' -: 1 - {

Page

4-21 Default Values for SASET Software Classes 59

4-22 Correlation Matrix of Project Size Relationships 68

4-23 Effort Equations Used by REVIC ... 68

4-24 Impact of Breaking Large CSCI into Multiple Smaller CSCIs in
i ISo...S.T.T.. . . 7 3

4-25 Impact of Breaking Large CSCI into Multiple Smaller CSCIs in
P R IC E -S 76

J 4-26 Impact of Breaking Large CSCI into Multiple Smaller CSCls in
S E E R -S E M 79

4-27 Impact of Schedule Compression and Extensions 81

4-28 Schedule Penalty Factors for REVIC ... 81

4-29 Impact of Stretching Out Full-Scale Impiementation for SEER-SEM 86

4-30 Summary of Key Model Inputs for Baseline Test Case 93

4-31 Baseline Test Case Results for Each Model in Manmonths 95

v.

~1

vii

AFIT/GCA/LAS/93S-4

Abstract

The objective of this thesis was to develop a consolidated document

which highlights the differences in definitions, assumptions, and methodologies

used by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and

examines the impact of these differences on the resulting estimates. To achieve

this objective, the following research questions were investigated: (1) What

differences exist between the cost models? (2) How do these differences

impact the resulting cost estimates? (3) To what degree can we explain and

adjust for differences between cost models?

S.ven specific areas of model differences were addressed including: (1)

software development phases, (2) development activities and cost elements, (3)

source lines of code and language differences, (4) key model attributes and key

cost drivers, (5) implications of project size on model output, (6) impact of

schedule compression and extensions, and (7) distinctive characteristics of

model data bases.

A hypothetical baseline test case was developed to determine if users

could explain and adjust for known model differences. Although the researchers

felt the differences could be partially explained, it was very difficult to logically

adjust for the differences. It is tha researchers' opinion that the underlving

equations and model assumptions are so dissimilar that objective normalization

efforts are virtually impossible for the everage model user.

ix

SOFTWARE COST ESTIMATING MODELS:

A COMPARATIVE STUDY OF WHAT THE MODELS ESTIMATE

I. Introduction

General Issue

The computer revolution has dramatically impacted all facets of society.

From manned space flight to NintendoTM games, computers have become an

integral part of daily life. We use computers to write term papers, analyze

properties of new drugs, and navigate aircraft. Most children gain basic

computer skills in elementary school through interactive learning sessions and

on-line games.

However, within the Dapartment of Defense (DoD), computer applications

go far beyond games. The basic role of the military is to defend and protect the

national interests of the United States. In some instances, existing war fighting

capability cannot adequately address perceived threats. When this occurs, the

military community may initiate a new weapons system acquisition.

r dL.eu wiui I dipnuy d iaign fig Ledinology and Pifting l l--- ,UIII, ,,mw

weapon systems are increasingly dependent on computers and associated

software. As shown in Figure 1-1, current trends indicate computer software

development and maintenance costs for military systems generally exceed those

of the hardware system (1:18).

800

Hardware

!Devlopmenir

206-

0

a

20 ' re r,

I ~0
1955 1970 19135

Year

Figure 1-1. Distribution of Software and Hardware Costs (1:18)

As new military applications of computers were discovered, software

acquisition costs within the DoD skyrocketed. Software costs increased from

approximately $3.3 billion in 1974 to $10 billion in 1984 (2:1462). This rapid

growth in software costs shows no signs of abating. A recent study of DoD

mission critical software costs predicts a 12 percent annual growth rate from

$11.4 billion in 1985 to $36 billion in 1995 (2:1462). Given the current
environm mnt of spiraling software costs and tight budget constraints, the need

for accurate estimates cannot be un,':-rstated.

Unfort, iately, software cost estimating capabilities have not kept pace

with the explosive growth of softwari development. Parametric software cost

models used in the early 1980s were acctate to within 20 percent of the

project's actual cost only 68% of the time (1:495); however, no evidence of

significant improvements in cost estimation miodels was noted in several recent

studies of parametric cost models (P, 4, 5, 6).

2

milli

This does not imply cost analysts should avoid using parametric cost

models. To the contrary, in the early stages of many projects when little actual

cost data is available, parametric cost models are ideal for generating initial

"ballpark" estimates. However, users should realize all new projects have a

certain degree of inherent risk and no model can estimate the cost of all possible

contingencies for all projects. Even if such a model was available, analysts are

not automatically guaranteed good estimates. A software cost estimating model,

like any other computer-based model, "is a 'garbage in - garbage out' device: if

you put poor sizing and attribute-rating data in on one side, you will receive poor

cost estimates out :he other side" (1:308).

Cost analysts have a variety of parametric models available to aid

preparation of software cost and schedule estimates. Currently, the four Air

Force preferred software cost estimating models are: REVIC, SASET, PRICE-S

and SEER-SEM (7). Each model has its own terminology, assumptions,

estimating methodologies, strengths, and limitations. A thorough understanding

of the models and their differences is essential for accurate, credible estimates.

Specific Problem

No single or consolidated document exists which explains the technrcal

characteristics of the four preferred software cost models. As a result, it is

difficult to evaluate and compare cost estimates generated by different cost

models. Analysts must refer to numetrous users manuals, contact softwara

model vendors, or rely on second-hand information when preparing and

comparing estimates from different models. In many instances, existing

documentation does not fully explain the intricacies of the models. More

3

importantly, many users are unaware of the differences between models or what

impact these differences have on the resulting estimates.

Research Objective

The objective of this thesis is to develop a consolidated document which

highlights the differences in definitions, assumptions, and methodologies used

by the REVIC, SASET, PRICE-S, and SEER-SEM cost models and examines the

impact of these differences on the resulting estimates. To achieve this objective,

the following questions must be investigated:

(1) What differences exist between the cost models?

(2) How do these differences impact the resulting cost estimates?

(3) To what degree can we explain and adjust for differences between
cost models?

Scope of Research

This research effort was undertaken to support the Air Force Cost

Analysis Aqncy (AFCAA). Specifically, AFCAA requested a technical analysis

of the REVIC, SASET, PRICE-S, and SEER-SEM software cost estimating

models. As a result, only these four models were chosen for analysis. No

research effort was expended researching other existing cost estimating models

such as SLIM, COSTMODL, System-4, or Checkpoint.

This effort did not specifically research the estimating accuracy between

models. Research was conducted with the intent of explaining the differences

between the models and examining the impact of these differences on the

resulting estimates. Cost analysts should consider the strengths and

weaknesses of each model as well as availability of information, time

4

constraints, and the nature of the proposed project prior to selecting a specific

model.

Definitions

The following definitions are provided to ensure the reader and

researchers have a mutual understanding of key terms and concepts used in this

thesis.

Algorithm. A mathematical set of ordered steps leading to the optimal

solution of a problem in a finite number of operations (8:557).

Ana.logv. An estimating methodology that compares the proposed system

to similar, existing systems. After adjusting for complexity, technical, or physical

differences, the cost estimator extrapolates the estimated cost for the new

system using cost data from the existing system (9:A-5).

CSCI. CSC. and CSU. Large software development efforts are generally

broken down into smaller, more manageable entities called computer software

configuration items (CSCls). Each CSCI may be further broken down into

computer system components (CSCs) and each CSC may be further broken

down into computer software units (CSUs) (10: B-1 4).

Cost Estimatingq. "The art of collecting and scientifically studying costs

and related information on c: -rent and past activities as a basis for projecting

LO ,=Z.) C,, 1i, iPUt to the u IC ~Ul' - -io , process fu " ur. act iv iy. k i).

Cost Model. A tool consisting of one or more cost estimating

relationships, estimating methodologies, or estimating techniques and used to

predict the cost of a system or its components (9:A-23).

5

•~~~~~ ~~ Jil " 'III alm m l• . . .

Expert Opinion. An estimating methodology which queries technical

experts and users iegarding the estimated cost of a proposed system (8:581).

Hardware. Consists of the physical and electrical components of a

computer system including items such as circuits, disk drives, wiring, and

associated peripherals involved in the actual functions of the computer (12).

Normalization. The process of rendering constant or adjusting for known

differences (8:594).

Parametric Cost Model. A model that employs one or more cost

estimating relationships for measurement of costs associated with the

development of an item based on the project's technical, physical, or other

characteristics (8:596).

PRICE-S. Programmed Review of Information for Costing and

Evaluation - Software. A commercial software cost estimating model distributed

by PRICE Systems, a division of Martin Marietta Corporation. See the Cost

Model Description section in Chapter II for details regarding this model.

REVIC. Revised Enhanced Version of Intermediate COCOMO. A non-

proprietary parametric cost model used to estimate software costs. See the Cost

Model Description section in Chapter II for details regarding this model.

SASET. Software Architecture Sizing and Estimation Tool. A non-
,1

proprietary parametric cost model used to estimate software costs. See the Cost

Model Description section in Chapter II for details regarding this model.

SEER-SEM. System Evaluation and Estimation of Resources - Softwaru

• Estimation Model. A commercial software cost estimating model developed by

Galorath Associates, Incorporated. SEER-SEM is currently site-licensed for Air

Force use. See the Cost Model Description section in Chapter I for details

regarding this model.

6

Software. The combination of computer programs, data, and

documentation which enable computer equipment to perform computational or

central functions (12).

Software Development Cycle. The software development cycle is

typically broken into 8 phases: (1) System Requirements Analysis and Design,

(2) Software Requirements Analysis, (3) Preliminary Design, (4) Detailed

Design, (5) Code and CSU Testing, (6) CSC Integraticn and Testing, (7) CSCI

Testing, and (8) System Testing. Software maintenance is often considered the

ninth phase in this sequence (10).

Software Maintenance. Software does not break or wear out;

maintenance refers to corrective, adaptive, and perfective chat iges to software.

Changes result when correcting software errors (corrective), responding to

changing data or processing requirements (adaptive) and improving features

through enhancements (perfective) (13:4).

Source Line of Code (SLOC). For purposes of this research effort, SLOC

is defined as all lines of' executable and non-executable code with the exception

of embedded comments. See Chapter' IV, Findings, for specific model

definitions for SLOC.

Thesis Structure

Trhne reAinder of thi rese-rchn rfo iv directed at anweinv Athn~en

investigative questions. The information gained by answering these questions

will allow the researchers to compile a consolidated document which highlights

the differences between the cost models and examines how these differences

impact the cost estimates. Chap'sr I1, Literature Review, reviews recent

publications in the area of software cost estimating and describes each of the

7

cost models selected for review. Chapter III, Methodology, explains how the

research effort was structured to gather information needed to answer the

investigative questions. Chapter IV, Findings, analyzes the information obtained

and answers the investigative questions. Chapter V, Conclusions and

Recommendations, draws an overall conclusion regarding the differences

between cost models based on the literature review and information obtained

and analyzed in the preceding sections of the thesis. Chapter V also identifies

areas where further rasearch may be warranted.

8A

urrrriri

11. Literature Review

Overview

This chapter reviews recent publications and research efforts in the field

of software cost and schedule estimation. Specifically, this review (1) examines

software development issues which impact the accuracy of cost estimates, (2)

explains a normalization technique for comparing estimates generated by

different cost models, and (3) provides description. of the cost models reviewed

"in this research effort.

Software Development Issues

Software developers and cost estimators seldom use thcb phrase "on-time

and under-budget" when describing their latest software project. Three software

development issues contribute to this problem: ever-increasing project size and

complexity, software sizing problems, and unstable software requirements and

specifications.

Ever-Increasing Size and Complexity. Since the beginning of software

development, there has been a race between the capabilities of the tools

available to programmers and the increasing complexities and sizes of the

programs they were called upon to create (14:6). Early programming languages,

such as Assembly language, required tne programmer to transform a problem

from its mathematical forn, icito the step-by-step format demanded by the

language. Assembly language programming was a slow, time-consuming

method of generating code. However, high ordered languages (HOL) such as

FORTRAN and Ada increased programmer efficiency because each line of HOL

generated several Assembly commands.

9

As programming efficiency increased, the size of software programs also

increased. Table 2-1 provides examples of software development efforts for

several recent projects.

Table 2-1. Examples of Software Content in Recent Projects (15:100, 101, 104)

.. NIN NM~~ ~ ~ n .~ '

1989 Lincoln Continental 83,517 35 1.8

Lotus 1-2-3 v. 3 400,000 263 7.0

Citibank Autoteller 780,000 150 13.2

Space Shuttle 25,600:000 22,096 1200.0

As the preceding table indicates, software programming has become a more

intricate, and costly, component of major projects.

One apparent solution for tackling large projects is to hire more

programmers. However, empirical evidence indicates this approach is seldom

applicable when dealing with software projects (16:18). Frederick Brooks,

author of The Mythical Manmonth, notes software programming is riot a perfectly

partitionable task - simply adding people does not guarantee the job will be

accomplished sooner (16:18). Although total effort initially decreases as workers

are added, total effort actually increases as more and more workers orb added

to a project. Brooks attributes this effect to increased intercommunication needs

(16:18). As more workers are added, more intercommunication is necessary to

ensure all the workers work toward the same goal. Beyond a certain point, the

benefits gained by adding more workers are outweighed by the increased

communication needs (16:19). Figure 2 -1 illustrates Brooks' Law.

10

Men

Figure 2-1. Effect of Adding Personnel to a Software Project (16:19)

Not only are projects becoming larger, but project complexity is also

increasing. In his article "No Silver Bullet: Essence and Accidents of Software

Engineering", Brooks states:

Software entities are more complex for their size than perhaps anv other
human construct because no two parts are alike (at least above the
statement level) ... In this respect, software systems differ profoundly
from computers, buildings, or automobiles, where repeated elements
abound. (17:11)

Sofftware Sizin, Problems. Estim-ting project size has been Les.ri, b

a very difficult undertaking "often considered to require black magic" (18:19). To

measure size, one r-ýquires a measurement technique. Although a number of

sizing methodologies exist, two of the most commonly used methods are

counting source lines of code (SLOC) and using function point aigorithms (or

some variation of the basic function point algorithm).

11

One of the most common techniques for measuring project size is

counting the number of SLOC. Many software cost estimating models assume

there is a relationship between SLOC developed and estimated development

cost (1:58; 14:25; 19:5-2; 20:1). This relationship appeals to the layman since it

seems logical for development costs to increase as project size increases.

(Note: These models also take many other factors into account when generating

cost estimates. See the Cost Model Description section in this chapter for

additional information on each model).

Using lines of code as a sizing technique presents an unusual paradox.

Most cost models require an estimated number of lines of code, yet the actual

number of lines developed are not known until after the project ' completed.

Overall, the SLOC measurement technique was criticized throughout the

literature. Most importantly, few people currently agree on what constitutes a

line of code (5:22). This situation is attributed to a lack of well-defined rules for

counting lines of code in each programming language (1:58; 21:13). Fcr

example, should we count only procedural lines of code or do we include

declarative statements? How do we account for comments or blank lines of

code? Do we count prototyped code or only delivered source lines of code?

Differing rules for counting SLOC is not the only factor contributing to

sizing problems. There is also a lack of agreement for conversion factors when

comparing code written in different languages. For example, high order

languages are considered more efficient from a programming viewpoint than

Assembly because one line of HOL code generates sever.'., lines of Assembly

code. Therefore, when comparing a program written in Assembly code and

another written in Ada code, an estimator should use a convarsion factor to

ensure an "apples-to-apples" comparison. One list of conversion factors claims

12

Room&

one line of COBOL is equivalent to three lines of Assembly, one line of PL1

equals 4.5 lines of Assembly, and 1 line of Smalltalk equals 15 lines of Assembly

(21:14). However, there is currently no universally accepted convention for

these equivalencies (21:14).

Due to the criticisms of using SLOC when measuring project size, several

alternative techniques have been suggested. Function points, introduced by

Allan Albrecht, are computed from five attributes of a program: the number of

external input types, external output types, logical internal types, external

interfaces types and external inquiry types (22:1-2). Several variations on

Albrecht's function points have evolved including Adjusted Function Points, Mark

II Function Points, and Capers Jones' Feature Points. Although some

independent studies have verified function points are superior to SLOC for

estimating cost and effort for business-related projects (22:2-3), a recent study

indicates function points are less useful for estimating real-time projects (4:45).

Chan-ging Requirements and Specifications. According to one software

developer, the hardest part of building a software system ib deciding exactly

what to build. No other step in the development process cripples the resulting

system more than a poorly defined system and no other part is more difficult to

later rectify (17:17). As projects become larger and more complex, the

importance of well-defined specificatlons cannot be understated. However,

translating customer needs to written documents understandable by all parties

continues to be a very difficult endeavor.

In his book, The Software Development Proiect: Planning and Managin,

Phillip Bruce identifies well-defined software requirements as the cornerstone of

a well-defined, well-understood, and well-costed software development effort

(23:17). Vague, poorly written requirements hamper pricing and design efforts

13

,3 I

by the developing contractor. Many times, program deficiencies resuiting from

poor requirements are not identified until the acceptance demonstration when

the customer realizes the software does not have certain displays, interactive

menus, or other desired features (23:17).

This does not suggest good requirements are carved in stone and never

change. Software requirements are subject to change throughout the

development process. Many factors contribute to these changes: the customer

desires a more functional software package, new technologies are developed,

or funding and mission priorities change. According to Alan Davis, user needs

are constantly evolving; therefore, the system under development is always

aiming at a moving target (24:1454).

However, the very nature of the software itself is often blamed for this

changeability. Paul Rook made the following observations about software

characteristics in a Software Engineering Journal article:

(1) Software has no physical appearance.

(2) It is deceptively easy to introduce changes into software.

(3) Effects of software changes propagate explosively. (25:7)

Normalization Explained

When asked how much they are willing to pay for a cac, most consumers

will adjust their offer price based on the presence (or absence) of various

features such as air-conditioning, compact disk player, or other interior

upgrades. This process of making adjustments for known differences is

commonly referred to as normalization. The concept of normalization is

14

particularly important when comparing cost estimates generated by different cost

models.

According to The AFSC Cost Estimating Handbook, proper use of any

cost model requires a thorough analysis of the model's assumptions and

limitations as well as its capabilities and features (9:8-6). This handbook points

out several key questions the cost estimator should resolve before using any

model to prepare an estimate. Specifically:

(1) What phases of the acquisition cycle are included in the model?

(2) Is the data required to use the model available?

(3) What units of measure are used by the model (dollars or
mannmonths)?

(4) What is the content of the data base on which the model was
derived?

(5) What is the range of input alues for which the model is valid? (9:8-6

I to 8-10)

Unless the estimator uncerstand, tL;,e underlying assumptions of the model,

which phases and activity costs are included in the estimate, and other such

questions, it is impossible to fairly compare one model's cost estimate to a

different model's cost estimate.

Cost r.Iod;l Descriptions

REVIC. Revised Enhanced Version of Intermediate COCOMO is a non-

proprietary cost model currently managed by the Air Force Cost Analysis

Agency. Raymond L. Kile developed REVIC in response to an Air Force

Contract Management Division initiative to improve oversight of government

15

software contract and for better support of software contract proposal

evaluations (20). REVIC is a variation of the intermediate COCOMO described

"<I:. in Dr. Boehm's book Software Engineerinq Economics (1). According to the

,-J REVIC user manuai, the model estimates development life cyc!e costs for

software development from requirements analysis through completion of the

software acceptance testing and a fifteen year mncn-, i rnce life cycle (20:1). All

equations used by the REVIC model are published in the REVIC user's guide.

The only required input necessary for running REVIC is a SLOC estimate

for the proposed project (20:4). However, the user can tailor an estimate by

- - adjusting various categorical variables used by REVIC. The model has four

primary input categories: personnel, computer, product, and project attributes

with 19 subordinate attributes. See Table 2-2 for REVIC inputs.

Table 2-2. REVIC Parameters by Category (20)

Analyst Capability ACAP Requirements Volatility (Note 1) RVOL
Programmer Capability PCAP Required Reliability RELY
Applications Experience AEXP Data Base Size DATA
Virtual Machine Experience VEXP Complexity CPLX
Language Experience LEXP Required Reuse (Note 1) RUUE

Modern Programming Practices MODP Time Constraints TIME
Development Tools TOOL Storage Limitations STOR
Project Security (Note 1) SECU Virtual Machine Volatility VWIT
Development Schedule (Note 2) SCED Cnmputs.r Turnaruncd Time I TURNE
Management Reserve (Note 1) MRES

Note 1: Additional pararmeters not found in COCOMO.
Note 2: REVIC accepts only the nominal (1.00) value for SCED,

The user selects from available ratings for each parameter which range

from Very Low (VL) to Extremely High (XX). Each rating translates to a

16

m m m TtiRrTm . <ct mr...s~smts

numerical value and when all 19 values are multiplied together, an

environmental factor is calculated. This environmental factor is then used in

REVIC's equations to calculate the project's schedule and cost.

The REVIC model differs from COCOMO model in several ways. The
primary difference between REVIC and COCOMO is the basic coefficients used

in the model's equations (20:4). REVIC was calibrated exclusively on DoD

software development projects whereas COCOMO was not (13:5; 1:496). As a

result, different coefficients were calculated when regression techniques were

applied to the new set of calibration projects.

SASET. The Software Architecture Sizing and Estimation Tool is a non-

proprietary model developed by Martin Marietta Corporation for the Naval Center

for Cost Analysis (6:2-9). The Air Force Cost Analysis Agency is currently the

central Air Force focal point and sponsor for this model (7). SASET is a forward-

chaining, rule-based expert system utilizing a hierarchically structured

knowledge database to provide functional software sizing values and an optimal

software development schedule (26:1-2). Optimal development schedule refers

to a derived schedule . ased on historical data reflecting the minimum

development cost (26:1-3).

According to the SASET on-line tutorial, SASET uses a three-tiered

approach to obtain input regardinc environmental, sizing, and complexity factors

related to proposed system (12). These three tiers are accompanied by fourth

and fifth tiers which gather maintenance and risk analysis information. Tier 1

gathers information regarding type and class of software, programming

language, number of CSCIs, and other development environmental f; ictors. Taer

2 develops lines of code estimates based on user inputs regarding softw-3re

functions, CSCIs, and CSCs.

17

SASETs sizing methodology is unique among the four models reviewed

in this thesis. (New versions of SEER-SEM released since the beginning of this

research effort also address function point sizing). Most cost models require the

user to input the number of estimated lines of code; however, SASET allows the

user to enter functional elements of the proposed system without any knowledge

of the estimated number of lines of code. SASET will generate a line of code

estimate based on the functionality specified by the user (12). The user also has

the option of directly inputting an independent size estimate.

Tier 3 describes the software complexity issues of the proposed system.

The user rates 20 complexity issues on a scale of 1 (very complex) to 4 (simple)

(26:5-52). Examples of the complexity issues include system requirements,

software documentation, development facilities, hardware constraints, software

interfaces, and software experience (26:5-52 to 5-55).

Tiers 4 and 5 are not necessary for development effort estimation. Tier 4

defines the maintenance complexities and a maintenance schedule (12). Tier 5

, provides risk analysis on sizing, schedule, and budget data. SASET uses Monte

Carlo simulation techniques to create distribution curves and various tables of

risk assessment parameters (26:1-3).

PRICE-S. PRICE-S is a commercially available software cost model

distributed by PRICE Systems, a division of Martin Marietta Corporation.

PRICE-S operates in a Microsoft Windows environment and features pull-down

enus and an extensive on-line help facility. Due to its proprietary nature, all

equations used by the model are not published; however, the PRICE-S

Reference Manual and other reports describe ossential equations and explain

the methodologies used to develop the model (27, 28).

18

PRICE-S generates software cost estimates based on project scope,

program composition, processor loading and demonstrated organization

performance, and other environmental factors (27:A-1-1). PRICE-S inputs are

grouped into seven main categories. (See Table 2-3 for model categories.)

Table 2-3. PRICE-S Input Jariables (27:A-1 -9)

1. Project Magnitude (How big?)
The amount of code to be produced and the languages to be used.

2. Program Application (What Character?)
The type of project such as MIS, Command and Control, Telemetry,
Communications, etc.

3. Level of New Design and Code (How much new work is needed?)
The amount of design and code that cannot be taken from existing inventory.

4. Productivity (Who will do the work?)
The experience, skill, and know-how of the assigned individuals or team, as
applicable to the specified task.

5. Utilization (What hardware constraints?)

The extent of processor loading relative to its speed and memory capacity.

6. User Specifications and Reliability Requirements (Where and how used?)

The level of requiremunts relating to testing, transportability and end use of
the product.

7. Development Environment (What complicating factors exist?)
The relative impact of unique project conditions on the normal tin~e required
to complete the job, measured with respect to the organization, rt-sources, program
application and project size.

Operational and testing requirements are incorporated, together with

technology growth and inflation, to calculate values for six cost categories in

nine development phases (PRICE-S considers one "pre-software" phase plus

the eight standard development phases) (27:A-1-2). Cost categories calculated

by PRICE-S inf'lude Design, Programming, Data, Sy ;tem Engineering/Program

Management, Quality Assurance, and Configuration Management (27:A-1 -2).

19

SEER-SEM. §ystem Estimation and Evaluation of .Resources - Software

Estimation Model is a commercial cost model distributed by Galorath Associates,

Incorporated and operates in a Microsoft Windows environment. SEER-SEM is

based on a mathematica! software estimation model developed by Dr. Randall

W. Jensen (19:5-1). Although the original model was developed during 1979 -

1980, SEER-SEM makes use of the latest updates to its input parameters by Dr.

Jensen, statistical conclusions from eight additional years of historical data, and
the experience of software cost estimation experts (19:5-1). According to the

SEER-SEM user manual, the model:

(1) produces estimates for software developments from System Concept
through 25 years of operational support

(2) furnishes the estimator with a wide range of inputs to ensure proper
representation of each unique softiware development

(3) supplies basic software development estimation, des; In-to, and cost-
to-complete capabilities

(4) offers many, varied output reports to ensure the estimator has all the
information necessary to estimate, monitor and control software
development projects. (19:5-1)

SEER-SEM has four primary input categories including platform,

application, development method, and development standard (1 9:Appendix E-1).
The model uses these four inputs to select a set of default ,rnm-t. r input1#0 from,

I r- -..... r-,•,•' from

integral knowledge bases. The only other required input is an estimated range

for number c lines of code to be developed.

The user may fine-tune the model by altering the default input parameters

selected from the knowledge base. Several key SEER-SEM parameters include

complexity, personnel capabilities, development support environment, product

20

development requirements, product reusability requirements, development

environment complexity, target environment, schedule, staffing, and software

maintenance. The user must provide three values: one for the low value, one

for the most likely value, and one for the high value (19:10-1).

The model also provides eighteen different reports analyzing cost,

schedule, and input relationships and generates charts for staffing plans,

schedule risk, and effort risk (19:11-1, 11-27). Some of the key reports

generated by SEER-SEM include the Quick Estimate Report, Basic Estimate

Report, Maintenance/Operation Support Report, and Inputs Report. The user

"can display these various reports in one window and the input parameters in

another window. This allows the user to analyze how the cost estimate is

impacted by changes in various input parameters.

Summary

This chapter reviewed recent publications and research efforts in the field

of software cost estimation. Several factors impacting the accuracy of cost

estimates were examined, the concept of normalization was explained, arid

model descriptions were obtained. The literature was consistent in one respect:

software cost models, in and of themselves, do not automatically generate good

cost estimates. One model developer best summed up this sentiment by stating:

Estimation is not a mechanical process. Art, skill, and knowledge are
involved The model's responsibilities are to transform measures of
estimators into consistent projections for costs and schedules. The model
cannot make the initial judgments that define the product, nor can it
commit an organization to achieving goals. It does not replace
estimators. It merely helps them do their job more quickly, more
consistently, and more thoroughly. (28:61)

21

Ill. Methodoloqy

Overview

This chapter discusses the methodology used for this research effort.

Research was conducted in two phases: (1) independent analysis of the cost

models and (2) validation and concurrence of analysis by cost model vendors

and model experts.

Phase 1. Independent Analysis

"The purpose of this phase was threefold. First, the researchers had to

become familiar with each software model befor(-ny meaningful analysis could

be performed. Second, after gaining familiarity with the models, the researchers

examined the underlying assumptions and equations of each model to identify

significant differences. Lastly, a baseline case study was developed and

sensitivity analyses were conducted to determine the impact of identified

differences between models.

During the first part of this phase, the researchers worked primarily on

becoming familiar with each model under review. To achieve this objective, a

review of current software cost estimating literature was conducted, previous
'I

model analyses were reviewed, and REVIC, SASET, PRICE-S and SEER-SEM

software and user manuals were obtained. On-line tutorials for PRICE-S,

SASET, and SEER-SEIV were completed by the researchers (REVIC does not

have this capability). Lastly, focal points for each model were identified to

provide additional assistance as required. Telephone interviews were the

primary means of communication with the focal points.

22

During the second part of this phase, the researchers examined the

underlying assumptions and equations of each model to identify significant

differences. To achieve this objective, the researchers relied heavily on the

models' user manuals, technical reports, published articles, telephone interviews

with model vendors, and hands-on experience with the models. To limit the risks

associated with concurrent research (e.g. two team members conduct research

on different models), a checklist was developed for examining the models. A

brief excerpt of the checklist is provided below. See Appendix A for complete

checklist used by researchers. Each issue was addressed as a specific finding

in Chapter IV, FindinQs.

Issue 1. What DoD-STD-2167A phases and activities are included in the
estimate produced by each model'?

Issue 2. What general development activities and specific cost elements
are estimated?

Issue 3. How does each model define a source line of code and how are
language differences accounted for?

Issue 4. Which model factors are key cost drivers? What estimating
methodology was used to develop these factors?

Issue 5. How does the model account for schedule compression and

extensions?

Issue 6. What implications does project size have on model output?

Issue 7. Are there any distinctive characteristics about the model's data
base(s)?

During the third portion of thi' phase, a baseline case study was

developed and sensitivity analyses were conducted to examine the impact of

identified differences between models. The case study was based on a fictional

23

flight avionics system. The fictional system was programmed in Ada and

developed using the traditional waterfall software development life cycle. See

Chapter IV, Findings for additional details regarding the case study.

A fictional case study was preferred over actual program data for several

reasons. Most importantly, it was the most flexible approach and allowed us to

develop a workable case study within this research effort's time frame.

Secondly, fictional data alleviated any potential problems with collecting and

using proprietary data. Lastly, the purpose of this effort was to examine how the

models estimate rather than to second-guess the cost estimates of previously

completed projects or to compare the model's relative accuracies.

Using the information provided in the case study, cost estimates were

generated using the nominal (default) values for all inputs in each model to

determine the base cost estimates. With the assistance of the model

developers/vendors, the researchers then adjusted model inputs to more

accurately reflect the development environment for the fictional case.

Phase 2. Validation and Concurrence

This phase focused primarily on querying model vendors and model

experts to obtain any additional information not found during independent

research and validating research results with vendors. Important steps included:

, -) Inteviewing vendors/model expert tL obtain neo-,ssary inforrIation
not found in independent analysis.

2) Validating accuracy of research results with vendors/model experts.

3) Documenting results of validations/concurrences with vendors.

4) Reevaluating and updating, if necessary, research results after
discussions with vendors.

24

-I

This phase relied extensively on telephone and personal interviews with

model vendors and experts. Additionally, there was an inherent degree of

overlap between Phase I and Phase 2. Frequent conversations were necessary

with model vendors since all equations and internal logic for the models are not

published and readily available.

25

------- -------. . - ------

IV. Findings

I NDING #1. Software Development Phases

Software development efforts within the Air Force are guided primarily by

two standards: DoD-STD-2167A for weapon system software and DoD-STD-

7935A for management information systems. DoD-STD-7935A will not be

discussed since this effort focused specifically on software development efforts

related to new or modified weapon systems. DoD-STD-2167A establishes

uniform requirements for software development efforts which are applicable

throu-hout the weapon system's life cycle (10:B-7). (See Table 4-1 for

DoD-STD-2167A phases.) Although the standard is not intended to specify or

discourage use of any particular software development method, it outlines

several major activities and key formal reviews the software development

process should encompass.

Table 4-1. DoD-STD-2167A Phases/Activities and Key Formal
Reviews or Audits (10:B-7)

Phase 1 System Requirements Analysis/Design System Requirements Review (SRR)

System Design Review (SDR)

Phase 2 Software Requirements Analysis Software Specification Review (SSR)

Phase 3 Prelimgnary Design Preliminary Design Review (PDR)

Phase 4 Detailed Design Critical Design Review (CDR)

Phase 5 Coding and CSU Testing None

Phase 6 CSC Integration and Testing Test Readiness Review (TRR)

Phase 7 CSCI Testing Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)

Phase 8 System Integration and Testing Formal Qualification Review (FOR)

26

Given the eight software development phases identified by DoD-STD-

2167A, each software cost estimating model was examined to determine which

phases were included in the estimate produced by each model Lnd how effort

was allocated among the development phases. Additionally, the model's ability

to account for alternative approaches for implementing the software life cycle

was reviewed. Table 4-2 summarizes the phases encompassed by the models

and is followed by a detailed discussion of each model.

Table 4-2. Correlation Matrix of Software Development Phases

•.. , .. :• -.. • . L ::. :: -.: : .• . -: ..- . .:..... :. :.-.:..:

T..... 4

System Rqmts Not Addressed System Concept System Concept SW Rqrnts Analysis
Analysis/Design Ey Model NOTE 1

System S/N Rqmts System S/W Rqmts

Analysis Analysis

SAN Rqmts
S/W Rqmts Analysis Engineering SAN Rqmts Analysis S/W Rqmts Analysis

Preliminary Design Preliminary Design Preliminary Design Preliminary Design Preliminary Design

Detailed Design Critical Design Detailed Design Detailed Design Detailed Design

Code & CSU Test Code and Unit Code Code and Test Code & CSU Test

Testing

Unit Testing

CSC Integration & CSC Informal CSC Integration &
Testing .Testing Test

CSCI Testing Integration & Test CSCI Formal Testing CSCI Testing CSCI Testing

System Integration & Development Test System Integration & System Test System integrate
Test & Evaluation Testing Through Operational

Operational Test & Test & Evaluation
-' Evaluation

Note 1: Initial research was performed with SEER-SEM, vef. 3.00. The current version (3.21) further

allocates scheduje/effort to System Requirements Analysis and S/W Requirements Analysis.

27

S. . .._ .••-''.L •••' ••-. - " - --. t.,--t=, •. •- ''•.-•-m= - = • 1 =. -

REVIC. REVIC estimates costs for six development phases versus the

eight identified by DoD-STD-2167A phases. Although the model estimates effort

associated with S/W Requirements Analysis, REVIC does not account for

System Requirements Analysis/Design effort. REVIC also combines phases 5

and 6 of DoD-STD-2167A into a Code and Unit Testing phase (20:3).

REVIC's terminology for its last two phases can cause some confusion
when comparing these phases against those identified by DoD-STD-2167A.

REVIC's Integration & Test phase is actually comparable to DoD-STD-2167A's

CSCI Testing phase. The REVIC User Manual defines the Integration & Test

phase as the integration of CSCs into CSCIs and the testing of the CSCIs

against the test criteria developed in the program (20:3). This effort corresponds

to DoD-STD-2167A's definition of the CSCI test phase. Additionally, REVIC's

Development Test & Evaluation phase is similar to DoD-STD-2167A's System

Integration & Test. This phase includes testing the weapon system to ensure

the requirements of the system level specifications are met.

Methodology for Aiocating Development Effort Among Phases. REVIC

initially calculates total software development effort based on user inputs for

SLOC and various environmental factors. Total development effort is then

allocated to four phases based on preset percentages. (See Table 4-3 for

REVIC's default allocation percentages.) The model thenr adds 12% of total

development effort for .S/W Requirements and 2-22% for Development Ttst and

Evaluation (DT&E) to account for the remaining two phases. For example, if the

effort associated with Preliminary Design, Critical Design, Code & Unit Testing,

and Integration & Test equals 1000 manmonths, REVIC adds 120 manmonths

for S/W Requirements Engineering and 220 manmonths for the DT&E phase.

The final estimate will total 1340 manmonths. Users may change the

28

S . ,a-.. -•.. .

Table 4-3. Default Allocation Percen'.ages for REVIC Develonm(nt Ph~ses

Pt'eliminary Design -___ _ 23% -

Critical Design 29%

Code & Unit Testing 22-%

Integration & Test -___-26%

percentages associated with these two phasas to better match the distribution of

effort applicable io their pairticular organization.

Primary and Aitern ative Anoroaches to the Sortware 'Lire Cycle. REVIC is

based on thr- waterfall life cycle approach. The mnde-l does not allow the user to~

spedify oth er life cycle; approaches such as evolutionary, prototype, or

incremental development'. Although REVIC has several development mode

optior's (Ada, Oreanic, Sami-det:3ched, and Embe~ddedl), these modes deoscribe

the type of developmeni projqct and noi the software life cycle approach.

SASE~T. If the user selects the DoD-STD-2 Th67A l ife cycle option, SAS 1z-T

estimates co t and schedulo rnilestoncs ior ton pchases versus the eiht phases

idertitied by DoD-STD-2167A. SASET bi-aks .2haso 1 into two phases: a

System Concept phase and a Systemr Software Requircments Analysis phase.

SASET aKr divides Phase 5 into two distinct phases: a Code phase and a Unit

-etpas. AI ote '-'E ses are uquivalent to) t~he phi asus described by

ODID-STD-21 67A.

Methodology for Alloc@atinrA Development Effort Among Phases. LikP

REV!C. SASET first calcuiates totld at.velopment effort and thf-,n allocateb a

percentage of the efiuort: to each of the ten phases. The user can change the

29

default allocation percentages; however, the allocation peircentaqjes muh!-- add up

to 1.0. ýSee Table 4-4 for the SASET's default aflocation percentages.)

Table 4-4. Default Allocation Perc.uinta~es for SASEY Development Phases

Sysieni Conce~pt 7.5%
yseS/W Requ~irements Anlysis _________%__

S/W Raq;iirements Analysis 9.0%

Preliminary Design 7.0%

Detailed Design 17.0%

CIode i13.0%

U'nit Testing I7.0%

CbC Intormil Testing 9.0%

CSCI Formal Tisting 7.0%

System, Integration & Testing 15.0%

'It should also be noted SASET adds an integration penalty when several

CSCls must be integrated. However, the integration penalty is simply added to

the total etlbrt and distrib.2uted Then among all ten phases based on the allocation

percentage. The user ha8 the option of assigning higher allocation percentages

to thz applicable phases to more accurately capture the additional effort involved

with OSCI integration.

Primnary a~nd Alternative Approaches to the Software Life Cycle. SAOSET is

based on thb water",all life cycle approach. The model does not have sper-fic

roptions wh.zh allow the user to select alternative life cycle approce sia

evolutionary, prototype, or incremental development. However, if the usE -;,

30

extremely proficient with adjusting SASET calibration files, alternative life cycle

approaches could be modeled (29).

PRICE-S. PRICE-S estimates cost and schedule milestones for nine

phases of software development versus the eight phases identified by DoD-

STD-2167A. PRICE-S breaks the System Requirements Analysis/Design

phase into two phases: a System Concept phase and a System Software

Requirements Analysis phase. PRICE-S also combines phases five and six of

DoD-STD-2167A into a Code and Test phase. With the exception of the

Operational Test & Evaluation phase, all other phases are equivalent to the

phases described by DoD-STD-2167A.

The Operational Test and Evaluation phase accounts for contractor

support costs related to the operational effectiveness and suitability of the

deployed system. According to a PRICE-S model developer, this phase should

be included if the project is a fairly simple effort (i.e. one or two contractors

involved). However, if the effort is more complex and involves several

contractors performing tests at various locations, the analyst should exclude this

phase and estimate these costs outside of the model (30).

Methodology for Allocating Development Effort Amonq Phases. PRICE-S

differs from REVIC and SASET in that no preset allocation percentages are used

to distribute effort to the various software development phases. The core of

PRICE-S consists of three major development activities: design, implementation

IA and testing. These activities comprise Preliminary Design, Detailed Design,

Code and Unit Test and CSCI Test. Key costs for the three major development

activities are estimated and then a "ripple effect" submodel is used to distribute

the cnsts across the software development phases. Figure 4.1 illustrates the

ripple effect submodel used by PRICE-S.

31

COSTS IN DOLLARS/1000 DESIGN IMPL T & I TOTAL

SYSTEMS ENGINEERING /400. 49. 13. 761.

CONFIG CONTROL, (VA 67. 61. 184. 312.

DOCUJMENTATION S& 19. -75. 152.
PROGRAM MANAGEMENT 63. 19. 39. 111.

TOTAL 652z 356. 769. 1775.

Figure 4-1. Ripple Effect for Calculating Activity Estimates (31)

The model developers viewed systems engineering during design as the

key to software development effort (28:6). As systems engineering for a project

increases, all other efforts necessary to complete the project will also increase.

This is why the model developers call systems engineering "key" and use it as

the starting point for the ripple effect.

According to '"he Central Equations of the PRICE Software Cost Model",

programming, configuration management, a; ! quality assurance are viewed as

supporting activities during the design phase (28:41). A-, a resi ilt, their effort

and cost are driven by the amount of activity in systems engineering. This

relationship is illustrated in Figure 4-1 by the two arrows immediately below the

system engineering estimate. Documentation is a function of the three

preceding activities and program management is a function of the sum of the

four elements that need to be estimated.

Programming is the central activity in the implementation phase and the

same approach used to estimate design costs is used to estimate supporting

activities. During integration and testing, PRICE-S model developers e!ected to

32

usCe systems engineering as the driver and all supporting activities are calculated

from this factor (28:41).

After these calculations are performed, the costs are rebalanced to

account for several factors such as high utilization and specification levels. The

Systems Engineering cost is apportioned to Design Engineering and System

Engineering/ Program Management. Configuration/Quality Assurance is split

into two cost eiements: Configiration Management and Quality Assurance

(28:4). The design activity is mapped to Preliminary Design and Detailed

DesiUn, implementationi is mapped to Code and Unit Test, and integration and

test is mapped to CSC*1 Test. Profiles are then created for each of the cost

categories and used to di.-tribute the costs over the development period.

Pr!mrn and Alit•rnative Approaches to the Software Life Cycle. PRICE-S

is based o, thi waterfall life cycle approach. The model does not have specific

options which allow the user to select alternative life cycle approaches such as

evolutionary, prototype, or incremental development. However, according to

PRICE-S personnel, alternative life cycle approaches can be modeled (30). For

exanmplq, an incremental life cycle approach can be modeled by setting up

mul.ipi,. CSCls and adjusting global factors to represent the project's

dvelc.ment profile. Inexperienced model users should seek assistance when

att.empting this process to ensure the desired results are achieved.

SEER-SEM. SEER-SEM estimates costs for nine software development

phases. Overall, the phases closely parallel those identified by DoD-STD-

2167A phases. Initial research was performed using SEER-SEM, version 3.00.

Although this version of SEER-SEM estimates System Requirements Analysis

effort; it is reported under the S/W Requirements Analysis phase and not

specifically allocated to earlier phases (32). The current version (SEER-SEM,

33

ver. 3.21) addresses this issue and further allocates System Requirements

Analysis effort to its associated phase.

Methodology for Allocating Development Effort Amona Phases.

According to the model developer, SEER-SEM allocates a percentage of the

development schedule rather than effort to each phase (33). The allocation

percentages are a function of the "Platform" and "Development Methods"

knowledge bases. These knowledge bases specify the "Percent of Base Full

Scale Implementation" allocated to various development phases. According to

the SEER-SEM User's Manual, Full Scale Implementation (FSI) includes

Preliminary Design, Detailed Design, Code and CSU Test, CSC Integration and

Test (19:5-10).

The "Platform" and "Development Method" knowledge bases were

examined to identify the default allocation percentages. (See Tables 4-5 and

4-6 for default allocation percentages.) Users may review and change, if

desired, the allocation percentages by adjusting the values in the knowledge

bases.

Table 4-5. Default Allocation Percentages for SEER-SEM Platform Knowledge Base

% a. Sa 20 20 20 20 20 20 20 20 20

FS1 to PDR

FS t of CDR 43 50 43 43 43 43 43 43 43
[F I t CD

% of Base 4 0 4 3 4 3 4 3 4
%oa 70 70 70 70 70 70 70 70 70
F$1 to CU1 ___ ____ ___

% of Bass 97 97 97 97 97 97 97 97 97
FSI to TRR

% of S 00 100 1 100 100 100
FSI to FOT 00 T__0__

34

Table 4-6. Default Allocation Percentages for SEER-SEM Development Method
Knowledge Base

.

%or ase 0 20 20 13 20 1 1 23 0
FSI to POR
% of Bas 0 45 45 35 45 3 3 42 0
FSI to CDR I

%ofBase 0 75 75 95 75 97 95 95 0
FSI to CUT
% of Base%oI t 0 97 97 97 97 98 97 97 0
FSI to TRR ___ _________

% of Base 0 100 100 100 100 100 100 100 0
FSI to FQT

An empirical analysis of SEER-SEM indicates the allocation percentages

associated with non-FSI phases (Requirements Analysis, CSCI test, and System

Integration and Testing) are generally independent of development: method.

Although the model developer states users "will see vastly different effort in

requirement analysis depending on which knowledge bases are chosen", our

analysis indicates the cost associated with requirements analysis was generally

5.8 percent of the total CSCI cost (33). (See Table 4-7 for an example of

allocation percentages for a ground based radar system.) The reader should

note these are only approximate allocation percentages for efforts involving the

design, code, and test of 100% new code based on different development

methods.

Primary and Alternative Approaches to the Software Life C.y.Lll. SEER-

SEM is unique among the models reviewed since specific options for alternative
life cyc!e approaches are available The user chooses from eight development

methods when describing the project and its CSCIs. (Note: Version 3.21

addresses a ninth development method: the evolutionary life cycle approach).

Table 4-8 provides descriptions of each development method.

35

Table 4-7. Allocation Percentages for SEER-SEM Development Phases

.. - '< J ... -. -

S/W Rqnits
5nl~s(~LI .8% 5.8% 5.8% 5.8% 5. % 3.0% 5.8% 5.8%

Desmigna 9.0%u 9.0% 9.0% r) 0% 0.3% 0.3*1% 47.5% 9.0%

D e tai le D e s ig n- - - _ _ _ _

Dctte cin 15.0% 16.5% 16. 5%/ 165b% 0.7% 0.6%/ 15.30% 15. 0"/

Cot&CU~t 23.5% 26.9% 27.0% 27.0% 74.5% 73 5% 10.7% 23.5%

JjCSC tnteg. & Tcst 28.1% 23.1% 23.2% 23.2% 1.1% 2.3 % 12.1% 28.1%/

:1CC Lt3.2% 3.2% 3.2% 3.2% 2_2% 3.5% 3.2% 3.2%

System intcg 15.4% 15.4%/ 15.49% 15.1% 15.4% 16.7%/ 15.4% 15.4%
Thni OT'&E _____ ___ ___ ____

Note I This phaise includes effnrt insociated Wt hoth System lUoquirerrm.nts Anialysiis and SoftwaIre Requiremetnts
Analysis. Subsequently analysis of SEER-SEM, icr. 3.21 indicates the total effort allocated to System
Requirement-. Analysis arnd Software Requirements Analysis remains at approximately 5 8%: howeveor. the
effort is now allocated to each phasi" rather than corribined in the SANS Requirements Analysis phase.

Table 4-8. Descriptions of SEER-SEM's Development Methods (19:9-3 and 9-4)

U~~~~ve~~~~o~ ._ _ c

Ada Development Use of Ada as a programming language

Ada Development with Ueof Ada as a programming language following the
mnci mental Methods inciremental devolopment proce~ss-__

Ad ulUse Use ot Ada programming language, Ada development tools,
Ada Full ~~and methods_______

None No formal development process used

Prototype Iterative development

Cyclical model where a repeating set of activities are
Spiralperformed on an increasingly more detailed representation of

_______-.the product _______ ____________

Tradtionl Inremetal Linear model which allow,,s the dev loper to iterate among the
Tradtionl Inremetal activities within each of the life cycle phase:, for each of the

___________ ~increments defined foi the system______

Traditional Waterfall Linear model where the activities of each phasiý of the life
_____ -- j cycle must be comrpleted before cotnunj h ePh

36

SEER-SCM uses project and CSCI descriptions to select the appropriate

knowledge base and its associated input values. (See Finding #7 for more

information regarding SEER-SEM's knowledge bases.) Low level inputs are

modified when different development methods are specified. For example, the

"Adafull" option has different inputs for "Modem Development Practices Use"

and "Language Type" to account for language differences and increased use of

automated software tools. Likewise, inputs for "Requirements Volatility" are

different when the "Incremental" option is selected. As a result, estimates vary

when different development methods are specified.

37

Finding #2. Development Activities and Cost Elements

When comparing the final cost estimates produced by different models, it

is important to recognize which development activities are (and are not) included

in the model's output. While no regulatory requirement for a specific cost

element format was identified, a framework of general development activities is

suggested. Using this framework as a baseline, analysts can then identiy and

adjust for differences between the models.

Each model was examined to determine which general development

activities are included in estimates. Table 4-9 provides a summary of the

comparison between the baselined development activities to the activities

estimated by each model. Table 4-10 identifies the specific cost elements

estimated by each model and is followed by model definitions for each element.

Table 4-9. General Development Activities included in Model Estimates

Rqmts Effort Note 1 Yes Yes Yes

Design Yes Yes Yes Yes

Code Yes Yes Yes Yes

Test Activities Yes Yes Yes Yes

Quality Assurance Yes Yes Yes Yes

Configuration Mgt Yes Yes Yes Yes

Direct SW Program Mgt Yes Yes Yes Yes

Documentation Note 2 Yes Yes Yes

Note 1: System Requirements Analysis not addressed by REVIC,
Note - Does not reflect all effort necessary to conform to DoD-STD-2167A documentation requirements.

38

Table 4-10. Specific Cost Elements/Activities Estimated by Each Model

g_ -g,1

REVIC • Requirements Analysis
* Product Design

0 Programming

* Test Planning

* Verification and Validation

0 Project Office Functions

* Configuration Management and Quality Assurance

* Manuals

SASET • Systems Engineering

0 Software Engineering

Test Engineering

* Quality Engineering

PRICE-S 9 Design

0 Programming

• System Engineering/Project Management

0 Configuration Control

0 Quality

a Data

SEER-SEM a Requirements Analysts
* Software Design

* Software Programming

a Software Test
a Project Management

a Configuration Management

* Quality Assurance

• Data Preparation

39

* - -

REVIC. REVIC distributes effort between eight major cost elements or

project activities. Definitions and activities associated with REVIC's cost

elements are listed in Table 4-11.

Table 4-11. REVIC Cost Elements and Definitions (1:49)

Requirements Analysis. Determination, specification, review and update of software
functional, performance, interface, and verification requirements.

Product Design. Determination, specification, review and update of hardware-soltware
architecture, program design, and data base design.

Programming. Detailed design, code, unit test, and integration of individual computer
program components. Includes programming, personnel planning, tool acquisition,
data base development, component level documentation, and intermediate level
programming management.

Te.st Planning. Specification, review and update of product test and acceptance test plans.
Acquisition of associated test drivers, test tools, and test data.

Verification and Validation (V& V). Performance of independent requirements validation,
design V & V, product test, and acceptance test. Acquisition of requirements and design
V & V tools.

Project Office Functions. Project level management functions. Includes project level
planning and control, contract and subcontract management, and customer interface.

Configuration Management and Quality Assurance. Configuration management includes
product identification, change control, status accounting, operation of program support library,
development and monitoring of end item acceptance plan. Quality assurance includes
development and monitor-ing of project standards, and technical audits of software products
and processes.

Manuals. Developn ent and update of user, operator, and maintenance manuals.

The amount of effort associated with each activity is a percentage of the

effort allocated to the following development phases: Software Requirements

Engineering, Preiiminary Design, Programming (including Critical Design and

Code & Test), and Integration & Test. For example, 46% of the effort incurred in

the Software Requirements Engineering phase is allocated to the requirements

40

analysis activity. The effort required in Development Test & Evaluation phase is

distributed among the eight activities. The effort distributed to each activity is

reported in REVIC's Activity Distribution Report and summarized in Table 4-12.

The percentage allocated by the Software Requirements Engineering phase

changes slightly for projects larger than 128,000 SLOC. Specifically, 44% of the
effort (versus 46%) is allocated to requirements analysis.

Table 4-12. Default Allocation Percentages for REVIC's Activities
..... • • ••:• :......+ + ..•.:..+ .,i !! • :: !i•!•i:i•iil!i: i!i!!• !! !: P • i ! • -:i!!..... ... : .. !ll ::~ :: iii~:.iii:iii':•'•

2A~~t~.....~nas

Rqmts Analysis 46% 10% 3% 2%

Product Design 14% 42% 6% 4%

Programming 6% 12% 55% 40%

Test Planning 4% 6% 6% 4%
Verfication & 8% 8% 10% 25%
Validation
Project Office
Functions 12% 11% 7% 8%

CM/QA 4% 3% 7% 9%

Manuals 6% 8% 6% 3%

Proiect Manaqement and Documentation Costs. REVIC includes the cost

vI. prject m-,anageiiin,,t and jii.urnieto u.nu,, in its effort caculations. Project

management costs are limited to direct project managernent and project office

functions. REVIC does riot estimate indirect higher management costs (1:59).

More importantly, REVIC does not estimate all data requirements

necessary to conform to DoD-STD-2167A. According to the REVIC model

developer, less than 15% of the estimate is attributed to the cost of

41

documentation (34). REVIC implicitly includes the cost of a Requirements

Analysis document, a Detailed Design document, and Test documentation in its

estimate. However, the effort required to genexite many of the documents

required by DoD-Std-2167A is not included in the estimate. As a result, REVIC

will tend to underestimate documentation costs for projects based on DoD-STD-

2167A. Users can refer to REVIC's CDRL section to aid in calculating additional

effort necessary to meet DoD-STD-2167A documentation requirements.

SASET. SASET allocates effort among four engineering organizations

rather than traditional cost elements. These organizations are Systems

Engineering, Software Engineerinq, Test Engineering, and Quality Engineering.

SI The primary activities associated with each organization are listed in Table 4-13.

Table 4-13. SASET Cost Elements and Definitions (29)

Systems Engineering. Involves analysts who translate and analyze customer requirements,
develop requirements and testing parameters, and seive as a customer interface.

Software Engineering Utilizes requirement information obtained from Systems Engineering
and derives requirements, applies requirements to S/W design and architecture, and
implements design (coding).

Test Engineering. Responsible for developing the test plan and test procedures, executing
tests, and reporting results.

Quality Engineering. Oversees product development and ensures the development plan is
carried out and properly executed. Verifies requirements are accomplished, customer
expectations are satisfied, and the product is produced in accordance with company
practices.

SASET allocates 14% of the total effort to systems engineering, 66% of

the total effort to software engineering, 15% to test engineering, and 5% to

quality engineering; however, these percentages can be changed by the user.

SASET then further allocates organizational effort in each phase of the software

42|

I

life cycle. For example, based oni SASEsdeatcarto~Stt~O,9%f

the effort required jlor the codle phase is allocciad to Systems Engineering,

72.9% to Software Engiineering, 12%/ to 'est'7',igineering, c, d 5.5%, to Quality

Engineering. I lsers car-, reisir to SASET's "Sumnmary of Softw.ý.eP Dev:elopment

Effort by OrganizE-tion & Phase Report" to determine how the effort is allocated

among the varicus development phases.

Prograry, r..lanagerent and Documnentation Costs. SASET calculates

direct software ptogi~am rnanaqJ'2rent costs and documenitAion costs; how,'ver,

ne~ither are specifically hi'ck'en out. SASET dues not ýýpecificchiy bre.k out

documem~ation costs for softwj,'e development projects. According tc Martin

Kla~ieta personniel, thwp model do,ý., I.CccUnt for documentation costs anC2 that

approximately 22% of the total development effort is .atxribut!ýd 'to dcocumentation

efrort and is distribuied throughout the project's life cycle (29j).

PRICE-S. PRICE-S e~kimates six roajor cost elements for ýioftwa.-e

development efforts. The cost elements include 'design, pr:,grarntning, systems

engineering/project managern~ent, configurLatIion rnanogemen., quality, and data.

Definitions for PRIC-S cost elemsnts and definitions cre listed in Table 4-14.

Prcgramn Managemient and Documentation Costs. PRICE-S specifically

accounts for all costs associated with software d~ccumentation and direct

software program mainagement. Documentation costs are accounted and

reported within the DATA cost element. Although program management is not

specifically biroken out, it is accounted and reported within the "System

EngineeringlF'roject Management" cost element. This cost element includes the

cost of System Engineering activities as well as Project Ma igement.

43

Table 4-14. PRICE-S Co, t Elements and Definitions (27:A-l 0 and A-I1)

Design. The design cost element contains all costs attributed to the software engineering
design department. These costs include engineering supervision, technical arid
administrative support and vendor liaison required for the software development effort.

J
Programming. The programming cost element contains all costs attributed to writing the
source code and subsequently testing it.

System Engineering/Project Management. This element includes the System Engineering to
define the software .:ystem, and the Project Management effoit required to manuge the
software development project. The system engineering activity encompasses the effort to
define the system requirements, and the integrated planning anJ control of the teclniica
program efforts of th:: design engineering, specialty engineeing, development of test
pocedures, and system oriented testing and problem -esolution. Project Manageement efforts
include managing the software development program in accordance with all procedures
identified in the Software Development Plan, design review activities, and administrative
duties.

Configuration Control. Tnis activity involves the determination, at all times of precisely what
is, and is not, an approved part cf the system. To accomplish this, it is necessary to perform
three tasks. The first involves incorporating requirements and specifications into the
Functional and Allocated Baselines. Once a document has been incorporated into the
baseline, changes may only be made through the configuration control task. This task
involves the evaluation of changes and corrections to the baseline. Finally, it is necessary to
provide for the dissemination and controi of approved baseline material. Configuration
Control also review the te•A procedures and ensure compliance with test plans and
specifications.

Quality. This cost element includes the effort requiired to conduct internal reviews and walk-
throughs to evaluate the quality of the software and associated documentation. Activities
included in this element are evaluation of the Software Development Plan, software
development library maintenance, and tiie Software Configuration Management Plan.

Data. This cost element contains all costs associated with software deliverable
documentation. For military platforms, this includes responding to the "Contractor Data
Requirements List" (CDRL) which contains requirements for delivery of all requirements,
design, maintenance, and user manuals (i.e. Systems Segment Specification, Top Level
Design and Detailed Design Specifications, Programmer and User Manuals, etc.).

According to a recent internal PRICE-S report, a general rule is that sixty

percent of the total System Eigineering/ Project Management costs are for

Project Management and the remaining forty percent of costs are attributed to

Systems Engineering (35). See Figure 4-2 for Ln example of a PRItCE-S report,

and associated cost elements.

44

Acquisition Mode

DATE Sun 6/20/93 TIXE 12/47 PM Project sample
392148

Engine Control Deut. Item v/comps

Costs in Person Months

Design Pgming Data S/PM 0/A Config TOTAL

Sys Concept 2.0 0.0 0.3 0.9 0.1 0.1 3.5
Sys-•SW Reqt 2.5 0.0 0.4 1.2 0.1 0.1 4.4
SW Requirement 5.0 0.0 0.6 !.4 0.5 0.5 12.0
Prelim Design 8.1 1.9 0.7 4.6 0.7 0.7 16.6
Detail Design 12.1 2.8 1.1 6.9 1.0 1.0 24.9
Code/Test 6.1 19.5 1.0 3.3 2.6 2.6 35.1
CSCI Test 8.3 5.S 1.0 3 5 2.1 2.1 22.5
System Test 1.6 2.0 0.3 1.0 1.1 2.1 8.2
Oper TE 1.0 0.6 0.4 0.6 0 7 0.7 3.9

TOTAl 46.8 32.4 5.9 27 4 8.8 9.9 131.2

Figure 4-2. Example of PRICE-S Report with Cost Elements

SEER-SEM. SEER-SEM estimates eight major labor categories for

software development efforts. Definitions and activities associated with each

category are listed in Table 4-15.

Program Management and Documentation Costs. Although SEER-SEM,

version 3.0 accounts for direct softare program management and

documentation costs, the specific costs allocated to each of these elements

cannot be determined. However, newer versions (SEER-SEM, version 3.21)

explicitly break out total effort among the various labor categories. See Figure

4-3 for an example of a SEER-SEM report and associated labor categories.

According to SEER Technologies personnel, all documentation costs are

not captured by the Data Preparation category (36). For example, effort

associated developing user manuals is associated with both the Data

Preparation and Software Design categories. As a result, users should not

report total documentation costs based solely on the Data Preparation category.

45

II

Table 4-1S. SEER-SEM Cost Elements and Definitions (19:5-11 and 5-12, 36)

Requirements Analysts. Responsible for developing S/W requirements and specifications.

Configuration Management. CSCI configuration identification, change control, configuration
status accounting, and configuration auditing to ensure proper configuration control.

Program Management. Direct labor management. It does not include hardware
management, highest level program management, etc.

Quality Assurance. Includes the quality engineering functions (ensures quality is built into the
product and developing appropriate standards), and quality control inspection and audits.

Soft'ware Design. The definition of the software architecture to implement the snftware
requirements, preparation of architectural design specifications, design reviews, layout of
physical data stnzctures, interfaces, and other design details to implement the requirements.

Software Programming. The actual coding, unit testing, maintaining appropriate unit
documentation, arid test driver development for the individual software modules/CsUs.

Software Test. Preparing test plans and procedures, running tests, and preparing test reports.
This includes software-related tests only.

Data Preparation. Effort to prepare specifications, standard engineering draft manuals (only
includes engineering effort) and other engineering paper products.

Mctiuity KanagePwnt Requirements DesigP Code

ystem Concept -00 lE. .1 0 .00 o.O
kystem Requirements Design 2.55 9.77 2.97 1.27
1/4 Requireneit•s Analysis 7.40e 29.67 3.73 3.74

reliminary Design 14. 15 12.86 52.73 15.43
etailed Design 23.73 21.57 08.44 25.89
ode & CSU Test 23.61 18.13 28.27 185.77
SC Integrate & Test 32.26 9.67 16.13 1117.27
SCi Test 3.71 8.93 1.15 10..0
ystem Integrate Tiru OTBE 17.65 b.41 8.83 83.65
intenance / Up Support 31.13f 6.OO 1.68 DIS

OTAL 125.17 96 .42 '199.95 491.30

Activity Dati. Prep Test Cm QA

Ystem Concept 0.a0 0.88 8.00 0.00
ystem Requirements Design 1.27 2.5 6; 02
/IW Requirements Analysis 3:71 7.411 1.25 1.25
reliminary Design 10.29 16.01 2.57 2.57
etailed Design 17.26 36.28 .31 4431
ode & CSIU Test 20.27 50.66 13.51 13.51
SC Integrate & Test 32.26 116.95 20.16 29.16
SCI Test 3-71 13545 2.32 2.32
ystem Integrate Ihru UT&E 2.21 1S4 26 11.S3 4.41
intenance / Oo Support 0.60 0.00 8.00 0.00

TnTAL 91.00 327.55 55.58 4H-96

Figure 4-3. Example of SEER-SEM, ver. 3.21 Report with Labor Categories

46

FINDING #3. Source Lines of Code and Language Differences

Lines of code is a commonly used metric for measuring the size of

software development efforts. Yet, there are many different techniques for

counting lines of code such as delivered source instructions, executable

statements, terminal semi-colons, etc. Due to the numerous conventions for

counting lines of code, it is important that analysts understand how specific

models define a line of code. For example, if a model defines a line of code as

all executable statements and comments, then the model user should ensure

inputs for project size include comments as well as all executable statements.

Users should also be aw.vare of how different programming languages

impact development effort. For example, it may take five lines of code in one

language to perform the same operation that requires 10 lines of code in another

language, Figure 4-4 illustrates a sample program operation written in Ada and

the same operation written in Assembly. The sample program operation

computes: if "x" is less than four, then "y" becomes equal to seven; otherwise,

"y" becomes equal to "x" plus five.

Ada if x < 4 then y:= 7; else y:= x+5; endif:

Assembly: MOV x, Ax
CMP Ax, 4
JL labPl
INC Ax, 5
MOV Ax, y
JMP end

label MOV 7, y
end

Figure 4-4. Sample Ada and Assembly Program Operation (12)

47

In this example, it takes eight lines of Assembly code to execute the same

operation as one line of Ada. However, this does not necessarily mean it takes

eight times as much effort to develop a program in Assembly than Ada since

total development effort is a function of many other environmental factors.

REVIC. REVIC, a COCOMO variant, refers to lines of code as source

instructions. COCOMO's developer defined source instructions as:

All program instructions created by project personnel and processed into
machine code by some combination of pre-processors, compilers, and
assemblers. It excludes comment cards and unmodified utility software.
It includes job control language, format statements, and data declarations.
Instructions are defined as code or card images. Thus, a line containing
two or more source statements counts as one instruction; a five-line data
declaration counts as five instructions. (1:59)

When the effort involves adapted (or modified) code, REVIC adjusts

SLOC using Equation 1.

F0.4DM+ 0.3CM + .31M 1
Equation (1): EDSI ADS! * 0

L ~100

where:

EDSI = Equivalent Delivered Source Instructions
ADSI = Adaptrc.d Delivered Source Instructions
DM = Design Modification
CM = Code Modification
IM = Retesting

In Equation 1, ADSI is multiplied by the percent of design modification, code

modification, and retesting. For example, an adapted code package which had

exactly 100% design modification, 100% code modification, and 100% retest

would result with an EDSI equal to the ADSI (20:14).

48

I•.... . .. ': " : '-'' ... •": -... *." "- iJ d .. & U i .,A ft fl 'V 1W A h I

Model's Ability to Account for Different Languages. REVIC does not

differentiate between languages. The model calculates the same effort for

10,000 lines of Assembly as for 10,000 lines of FORTRAN. The only exception

is if the Ada development mode is selected. Estimates based on the Ada

development mode generally result in less effort than the embedded and semi-

detached development modes, but more effort than the organic development

mode. (See Finding #5 for REVIC's equations for different development modes.)

SASET. SASET defines SLOC as:

All executable statements, plus inputs/outputs, format statements, data
declaration statements, deliverable job control language statements, and
procedure-oriented language statements. SLOC does not include
statement continuations, database contents, "continue" statements, or
program comments. (12)

Users may specify the amount of new, modified, and rehosted code associated

with the development effort. New code is software code that will be developed

from scratch. Modified code is software code which has some development

already complete and can be used in the software program under consideration.

Rehosted code is completed and tested software code which will be transferred

from one computer system to the new system under development.

Once inputs for the SLOC values are made, SASET computes an

adjusted sizing value called "New HOL Equivalent Source Lines of Code". To

•,re u ,,i value, O -iL assur,-esfU t 3^1o Of the modified code and I uo^-/fO

the rehosted code is equivalent to the effort required to generate a new LOC.

These percentages can be changed by modifying the SASET TIERS.CAL

calibration file. For example, 1000 lines of modified code is equivwlent to the

effort required to generate 730 lines of new code, SASET also assumes every

.-tree lines of Assembly code is equivalent to one line of HOL code.

49

Table 4-16 provides an example of how SASET calculates the New HOL

Equivalent SLOC.

Table 4-16. Sample SASET Calculations for New HOL Equivalent SLOC

1000 1000 1000 1000 1000 1000 6000

New HOL Equivalents:

1000 73 100 333 243 33 2439

Calculations.

New HOt. (1000 x 1.00) - 1000 lines of New HOL
Modified HOL = (1000 x 0.73) - 730 lines of New HOL
Rehost HOL (1000 X 0.10) 100 lines of New HOC_
New ASSY (1000/3) = 333 lines of New HOL
ModASSY (1000 t3) x 0.73 - 243 lines of New HOL
Rehost ASSY (1000 / 3) x 0.10 33 lines of New HOL

Model's Ability to Account for Different Lanauaaes. SASET allows the

user to select from two categories of language types: high-order languages

(HOLs) and Assembly language. The model does not differentiate between

HOLs. For example, SASET considers a line of Ada equivalent to a line of CMS,

FORTRAN, or any other commonly recognized HOL. The user may also specify

the amount of new, modified, and rehosted code in HOL arid/or Assembly

language.

PRICE-S. According to the PRICE-S Reference Manual, source lines of

code are defined as:

The total number of s -urce lines. of code to be developed and/or
Tpurchased. Comments reibdded in the code are not to be counted.

However, type declarations and data statements should be included and
will be broken out separately via the FRAC input. (27:37)

50

~~~~~~ JAM lIl~I'dd



PRICE-S allows the user to specify the percentage of new design and new code.

Application--weighted averages for new design and new rode are used since
some parts of a software system are more difficult to design and implement than

others (27:D-1-35). This effect is illustrated by this example:

If one were to estimate the costs for a system in which 50% of the code is
to be reused, reasoning might lead to the conclusion that the effort
required would be about half that for 100% new code. This reasoning
would fail to recognize that it is invariably the inexpensive code (utilities,
math, etc.) that is avaiiable for reuse, and that the difficult, machine
dependent, problem-specific code has yet to be constructed. (27:D-1-35)

PRICE-S modifies the user input for SLOC using a composite application

value (APPL). Equations 2 through 4 on the following page are used to compute

the application-weighted factors and modified SLOC. Furthermore, the model

assumes off-the-shelf code is not free since programmers must become familiar

with the code, the final test and integration of subsystems will involve all new or

modified software, and all delivered software must be documented (27:A-1 -12).

Model's Ability to Account for Different Languages. PRICE-S allows the

user to select from 20 different programming languages. If a specific

development language is not listed, the user may choose from four generic

groupings. Table 4-17 lists language selections within PRICE-S.

SEER-SEM. SEER-SEM defines SLOC as all executable source lines of

code such as control, mathematical, conditional, deliverable Job Control

Language (JCL) statements, data declaration statements, DATA TYPING and

EQUIVALENCE statements, and INPUT/OUTPUT format statements. Source

lines of code exclude comment statements, blank lines, BEGIN statements from

Begin/End pairs, non-delivered Programmer Debug statements, continuation of

format statements, machine/library generated data statements (19:10-2).

51



(A(!V,* APPL, * CODE,)
Equation (2): NEWC = - APPL

_,( MIX,.* APPL,,* DESIGNV.)
Equation (3): NEWD =

APPL

Equation (4): SLOCM = SLOC* APPL

where:
APPL = APPL = E"M/IX* APPL

MIXN = Fraction of total SLOC devoted to performing functions in
application categoryi

APPLi = Application value for functional application category
CODEi Fraction of code of application categoryi representing new work
DESIGNi = Fraction of design of application categoryi representing new

work
SLOCM = Modified Source Lines of Code .....

Table 4-17. Language Selections within PRICE-S (27:C-3)

1 Ada 9 COBOL 17 PASCAL
2 ALGOL 10 COMPASS 18 PL1
3 APL 11 CORAL66 19 PRIDE
4 ASSEMPLY 12 FLOD 20 SPL1
5 ATLAS 13 FORTRAN 21 HIGHER ORDER
6 BASIC 14 IFAM 22 MACHINE
7 _ C 15 JOVIAL 23 4th GENERATION
-8 CMS ','6 MICROCODE 24 INTERPRETIVE

SEER-SEM allows the user to allocate SLOC between three categories:

new fines of code, pre-existing (not designed for reuse) code, and pre-existing

(designed for reuse) code. Using these inputs, the model calculates an

"Effective Size" which allows comparison of development alternatives when

some alternatives include reusable code and others do not (19:1-1).

New lines of code are those lines that will completely designed,

implemented, and tested. Pre-existing (not designed for reuse) code involves

52

.. ,- - -w I __ '- . ... ...... ... . ' " .. -- '" -• -' - ' -- "1 .- " -



lines that were not originally designecd for reuse but will be used during this

effort; whereas pre-existing (designed for reuse) code was specifically designed

to ensure reusability. The user further allocates SLOC among six sub-

categories: pre-existing lines of code, lines to be deleted in pre-existing code,

lines to be changed in pre-existing code, percent to be redesigned, percent to be

reimplemented, and percent to be retested.

Model's Ability to Account for Different Languages. SEER-SEM allows the

user to select from a variety of programming languages. Table 4-18 lists the

choices available for the Language Type (complexity) parameter. The model

"also accounts for differences associated with the Ada language with its

Development Method knowledge base (AdaDev, AdaFull, and AdaInc).

Table 4.18. Language Selections within SEER-SEM (19:10-20 and 10-21)

Very High Full Ada, PIll Version F
High__ JOVIAL, CMS-2 Mainframe Assemblers
Nominal Pascal, FORTRAN, COBOL, C, PLI1 Subset G, PC Basic,

Micro Assemblers, Ada without Tasking
Low _Basic, Many 4GLs

Note:The user may select in between these setting with the PLUS and MINUS ratings. For
example, nominal + is higher than nominal: nominal - is lower than nominal.

53

S ...... : .. ........ ~ -- ... • •l• m mld • • ~m l'.•,•



Finding #4. Key Model Attributes and Key Cost Drivers

Although different software cost models calculate total development effort

in different ways, the model developers appear to agree in one respect. Project

costs cannot generally be estimated solely cn the basis of the number of source

lines of code. A variety of factors such as programmer capabilities, modern

development practices, requirements volatility, and reusability requirements

influence the development effort.

Recognizing the need to account for these factors, the models allow users

to describe the development' environment by modifying various development

attributes (or inputs). For example, if the user knows the development team has

extensive programming experience for the proposed project, he or she may

adjust a model input to reflect these circumstances. If no additional information

is available, the user should select the nominal value.

This section reviewed model inputs and four broad categories were

identified: personnel capabilities, development environment, target environment,

and project requirements. Many of the key model inputs were categorized in

Table 4-19; however, this table does not attempt to categorize all inputs nor

does it illustrate equivalent model inputs. It is provided to show a sampling of

available model inputs for the previously identified categories. Additionally, the

reader should riot assume the model inputs are equivalent simply because they

are lined up a.ross. from one another.

The impact of various model inputs on total development effort was also

examined. The results of this analysis were provided in the form of graphs and

figures, where possible, to illustrate the subtle (and not so subtle) impact on

model estimates.

54

J • • '" ',- ,•...-.= :,J• 2 • '•• •" ' " • • ''-W.. . .. . .&-I - ' . .. . -!



Table 4-19. Categorizaticn of Key Model Attributes

..... . •.... .. .........-., . .4 ... ..... ..... -. . >• .. ..-- ... . ...... ... -.-. ; • ..

Personnell

Capabilities ACAP Development Team CPLX1 Analyst Capability
PCAP S/W Experience PROFAC Analyst Application Exp

AEXP H/W Experience Programmer Capability

VEXP Integration Exp Programmer Lang Exp

LEXP Personnel Resources Target System Exp

Development
Environment MOOP Dev Locations CPLX1 Modern Oev Practices Use

TURN Workstation Types CPLX2 Resource Dedication

VIRT Programming Lang CPLXM Multiple Site Development

TOOL S/W Dev Tools PROFAC Automated Tool Use

SECU Dev Facilities LANG Language Type

Travel Requirements SSR Date Terminal Response Time

Target
Environment TIME % of Memory Utilized UTIL Memory Constraints

STOR % of Microcode APPL Time Constraints

RELY Timing & Criticality NEWC Security Rqmts

DATA Man Interaction NEWD Target System Volatility

CPLX Hardware Constraints PLTFM Target System Experience

RUSE Software Interfaces MIX Real Time Code

Project
Rqmt-. RVOL System Rqmts PROFAC Rqmts Volatility

SMW Rqmts CPLX1 Specification Level

Note: This table does not attempt to illuutrate equivalent model Inputs. It Is provided to show a sampling of

available model inputs for four main development categories.

REVIC. REVIC initially calculates development effnrt as a function of

SLOC and the development mode. After adding additional effort for the softwae

requirements analysis phase and development test and evaluation phase,

REVIC multiples total effort by an environmental modifier which consists of 18

model inputs.

55



The environmental modifier is the product of the values for each model

attribute. As a result, REVIC's environmental modifier can have a significant

impact on the final estimate. In a worst case scenario where input parameters

are set to the most difficult setting, the environmental modifier will equal

450.703. In a best case scenario, the environmental modifier will equal 0.055.

Thus, if the nominal effort for a project is 500 manmonths, the effort could range

from 27.5 manmonths (best case scenario) to 225,351.5 manmonths

Due to the sensitive nature of certain REVIC inputs, Figures 4-5 through

4-8 are provided to show the range and impact of various REVIC inputs. The

impact of schedule compression and extensions are not addressed in this

section. (See Finding #6 for details regarding this issue.)

1.5 -- --- - -

1.4 ---- --- ---

1 1.3 - --- -
m

.2 - ACAP

1 --- -- -A EXP

F . --.. . . .- VEXP
r 0.7

0080.7 - --- -- LEXPr O.7 ~

Very Low Low Nomirnil High Very High XHigh xx

Figure 4-5. Impact of REVIC Inputs for Personnel Capabilities and Experience

56

- --



1.4 *-- - -...-- *--. ...... . . . .

1 1.3- -----

p 1.2----Z 
OI

-0-- TURN

IF 1 .-.- - -VIRT

a 0.9......... ......................................

0t .. . . . . . ..... . .. . ...... ...... . .... .......... ..............

1 .7

in.5 
-  -- - - - - - -  _ _

1 .7

m01.4 ------------------ -- -X ----XO

t
1 .1................ - - -K-~ RELY

IF

1. ---- - ---- - ---- -------- L

-t RUSEj

00.8 .- <- - - - - - - --

Vaer Low Low Nominail High Very High XHigh XX

Figure 4-7. impact of REVIC Inputs for Target Environment

57



~~~~~~7~~~~ -.- ~ . . .-.--........ -. .. . . .-.-.- ..~....-. ....... .

: • 1.5

.t1.5
imn 1.4

S0

t
o 0.8

0F .80 0.85

0.5 7I t-

Very Low Low Nominal High Very High XHigh XX

Figure 4-8. Impact of REVIC Inputs for Project Requirements

SASET. Development effort is a function of the lines of new equivalent

HOL code, software type, and software class. The values for software type and

class of software were developed by regression analysis on Martin Marietta's

database of 500 projects (29). Tables 4-20 and 4-21 list the default values for

various software types and classes.

The following example is provided to illustrate how the core of SASET's

estimate is calculated. A manned, flight application program with 50,000 lines of

i equivalent HOL code would requiked 285,000 development hours (50,000 lines

3.0 manhours/line * 1.9 manhours/line). This value represents the core of

SASET's estimate; however, the model considers other environnmental factors.

According to Martin Marietta personnel, these factors should not be considered

primary drivers, but they can influence the estimate (29). Consequently, users
should understand how they impact thc estimate.

58

Table 4-20. Default Values for SASE1 Software Types

Systems 3.30

Applications 1.90

Support (Note 1) 0.85

Data Statements (Note 2) 0.075

Note 1: The SASET 3.0 Technical Reference Manual (Beta Version) iecorded the support value as 1.1.
However, SASETs calibration file has a value of 0.835. According to Martin Marietta personnel,
0.85 is the correct value (29).

Note 2: The SASET 3.0 Technical Reference Manual inaccurately s~tates Data Statements are multiplied
by Software Class value. The Data Statements value (.W5S) is actually multiplied by the
corresponding Data -actors in the calibration file.

Table 4-21. Default Values for SASET Software Classes

Manned Flight 3.00

Unmanned Flight 2.30

Avionicb 1.20

Shipboard/Submarine 1.35

Grountd 1.00

LCommeercial 0.70

The co!-e estimaie May be impacted by the Average Software Budget

Multiplie~r (ASBM) The AZBM is the average of the Software Budget Multiplier

(SBM) and Softwvare System Budget Multiplier (SSBM). The SBM is calculated

fron'l the Tier -1 inputs addressing the system ernvironment. The user May notice

that software class is a Tier 1 iniput; however, it is not included in the SBMV

59

calct 'ation. The SSBM is calculated from the Tier 3 inputs addressing the

attributes of the system and each CSCI has its own Tier 3 section. As a result,

CSCIs from the same project may have the same SBM values but different

SSBM values.

The ASBM is analogous to the environmental factors in REVIC but is less

sensitive and has less impact on the estimate. The values for the Tier 1 and Tier

3 inputs were developed by expert judgment (29). The impact of schedule and

integration penalties are not addressed in this section. See Findings 5 and 6 for

additional information regarding these issues.

Finally, it should be mentioned that the values for all factors can be

changed by modifying SASET's calibration file. However, since there values

were developed utilizing regression and expert judgment techniques, users

should not adjust these values unless they are confident a more reliable

estimate will result.

PRICE-S. Othf r than lines of code, the key cost drivers for PRICE.-S

estimates include applicztion (APPL), new design (NEWD), new code (NEWC),

productivity factor (PROFAC), platform (PLTFM), and complexity (CPLX1).

Figures 4-9 through 4-14 are provided to illustrate the impact of these factors on

development cost.

At first glance, it does not appear PRICE-S offers as many input options

as the other models. This is not tU- case since many of the key cost drivers are

composite descriptors. For example, CPLX1 is a composite of personnel

experience, automated tool use, product familiarity, and complicating factors.

Likewise, the user selects the PROFAC based on the project's source language,

application, arid platform.

60

- -. - l=Um~mm

Ly

U

>

2-

0 2 4 88 10
AFPL

Figure 4-9. Effect of Application on Cost for PRICE-S (27:D-1-55)

u*

4-

N¶0

Figure 4-10. Effect of N~ew Design on Cost for PRICE-S (27:0-1-57)

61

).)

0

W

>

NEWC

Figure 4-11. Effect of New Code on Cost for PRICE-S (27:D-1-58)
11

' 14

I'1i

RELATNE
COST I~

Figure 4-12. Effect of Productivity Factor on Cost for PRICE-S (27:-1 -54)

• . " 0 . .4 . .62

I0

8-

2S-

. [o.
U0

0 1 1.2 1 .4 I 's 2 5

PLTFM

Figure 4-13. Effect of Platform on Cost for PRICE,.S (27:D-1-56)

I-e

J 6l-
7..87.

4-I

0 . .. 1. 4

o......12 1.9

Figure 4-14. Effect of Comnplexity or' Co4.'A tor PRICE-S (27,D-1-59'•

63

SEER-SEM. SEER-SEM uses environmental factors to incorporate the

influence of the development environment on effort and schedule (19:0-11).

j Although the model provides default input values based on the knowledge base

chosen, SEER-SEM allows the user to adjust approximately 50 factors to more

accurately reflect the deveoprnent project (assuming additional information is

available).

According to the SEER-SEM user's manual, the effect of these factors oil

tiliII ~development effort is a function of the range Of valuePs the factor can take
(19:0D-.1). Figures 4-15 through 4-19 are provided to illustrate the impact of

many key environmental factors.

J .Tar W g.d

________m¶ op..Q If* T"
-I wqw eu I4w*~VwwP e ld

_________ Susaft4.iI' L.Dv
W e~u & Mkuu~do '-ARWy

________ .~Uv.r.WfCoewirfidmW
A h~wlsd ToaW4 U44P
M~Acp voo

I I ~9PvWiW & M*WhdiMW

. Z Z~ i..qi,~ffiViim Iy d

0% 10% 20%, 30%o 40% 50% 160% 70% 809A 90% 100%*I'0%121)%40(T%

Figure 4-15. 'Technalogy and Enivironnm. it Impactm f'.?r:SI-'T:R-SEM
(37.Appeindix *A)

ISO-

1.40

I .

•1.10 N wmn odif

F Lwu. ,

C 1.00 i I I t ie

0 0..0 - -- --••H-g-
r

o.•--- • _igh

0.70 .71

Figure 4-16. Impact of SEER-SEM Inputs for Personnel Capabilities and
Experience (37:Appendix A)

1.40

m 1.20 12

F - I•,v,, IA I

t

00.180 fifh

0.70

Figure 4-17. Impact of SEER-SEM Inputs for Development Environment
(37:Appendix A)

65

1.70
.85

1 1.90M

. .SpOCWm Dislays
C
t 1.40 ' -- 1A4) N - emory Conmtraint a

F 1.30

- Raw Time Code

r 1.10

1.00 T .4 • i • ' ' I I ,

Very HIgh Extra High

Figure 4-18. Impact of SEER-SEM Inputs for Target Environment (37:Appendix A)

2.00
1.94

1.80 I :1.77

M

1.40 -- As " .

F

1 .2 0 ----. ...

1.00

Low Nram High0.80

Very Low Very High Extra High

Figure 4-19. Impact of SEER-SEM Inputs for Project Requirements (37:Appendix A)

66

Finding #5. Implications of Project Size an Model Output

Software development effort is a function of project size as well as

numerous envircnmental factors such as project complexity, target computer

system, and development staff capabilities. Since project size tends to have a

significant impact on a project's cost, model users should understand the

functional relationships between project size and development effort. For

example, does the model assume effort increases at an increasing or decreasing

rate as CSCI size increases?

To preclude inappropriate use of a model, users should also be aware of

its basic limitations. Does the model estimate at the project, CSCI, or CSC

level? Is the model limited by the number of CSCIs? Additionally, what is the

recommended estimating range for the model? (The recommended estimating

range for each model was obtained from model developers/vendors). For

instance, if the recommended estimating range for a model is from 5,000 to

100,000 SLOC at the CSCI level, the user should be cautious of estimates

based on 130,000 SLOC CSCIs.

Each model was examined to identify the functional relationship between

project size and development effort and the impact of breaking large CSCIs into

multiple smaller CSCIs. Additionally, each model's coverage regarding CSCIs,

CSCs, and CSUs was researched and recommended estimating ranges were

verified. Table 4-22 summarizes the results of this review.

67

Table 4-22. Correlation Matrix of Project Size Relationships

Functional Depends on Increases at a Increases at a Increases at a
Relationship Between Covelopment Linear Rate Decreasing Rate Increasing Rate
Size and Effort Mode _______________

Impact of Blreaking No Impact Effort Increases Effort Decreases effort Decrease
Project into Multiple Note 1 Note I

Integiation Costs for
Multiple CSCI Projects N e e e
Estimating Levels Note 2 CSCIs & CSCs CSCls 8& CSCI CSCIs, CSCs. &
Addressed by Model _ ______CSss

Recommended 500 to 130,000 500 to 120,000 5000 to 200,000 2000 to 200.000
Estimating Ran92 SLOC per data file SLOC per CSCI ISLOC Note 3 SLOC per CSCII

Note 1: Effort for Individual CSCIs decreases; however, totai effort may increase or decrease due to Integration costs.
Note 2: Depends on user definition. REVIC estimates modules and does not differentiate between CSCls, CSCs, or OS~s.

Note 3: Assurfies no model caiibration. Range will change if model is calibrated to past efforts by the user's organization.

REVIC. REVIC assumes effort increases at a slightly increasing rate as

size increases for the organic, semi-detached, and embedded development

modes. However, effort increases at a slightly decreasing rate with respect to

size for the Ada development mode. These effects are explained by the

exponents associated with the equations used to estimate effort. The coefficient

and exponent used in each effort equation is dependent on the development

rnc'de. REVIC's effort equations are identified in Table 4-23.

Table 4-23. Effort Equations Used by REVIC (20:Sec 1i1, 5)

Ada Effiort =6.8OO0* (KBSI) 0-

Organic Effort =3.4644 *(KDSI) 105

Semi-detached Effort 3.9700 * (KI)SI)

Embedded Effo rt 3.312 0 *(KJ),51)i.2 o

68

The exponents associated with the organic, semi-detached, and

embedded development modes are greater than 1.0 which ii. iplies an

"increasing at an increasing rate" relationship; whereas, the exponent

associated with the Ada development mode is less than 1.0 which implies an

"increasing at a decreasing rate" relationship. Figure 4-20 graphically depicts

the relationship between size and effort for each development mode based on

REVIC's default settings.

1200 ADA

1000 ORGANIC

" . .00..SEMI-DETACHEDJi 800 i
E EMBEDDED

S600"!_•- 400

200

10 30 50 70 90

SLOC 10ooOs

Figure 4-20. Functional Relationship Between Size and Effort for REVIC

Impact of Breaking a Single Larne CSCI into Smaller Multiple CSCIs.

REVIC does not differentiate between CSCIs, CSCs, and CSUs. The user

inputs size into modules and determines whether a module is a CSCI, CSC, or

CSU. Since REVIC doec not explicitly add effort for integration between

modules, there is no impact on effort and schedule for breaking a project into

smaller units in the same session.

69

-m -

REVIC generates the same effort and schedule for a single 100,000

SLOC module or four 25,000 SLOC modu!es. However, this assertion is true

only if all four 25,000 SLOC modules are estimated in the same REVIC file. For

example, let's assume four 25,000 SLOC modules based on the embedded

development mode will be developed and all default variables are left constant.

If the four modules are entered in a single REVIC file, an effort estimate of

1,114.8 manmonths is generated. An estimate based on a single 100,000 SLOC

module will yield an equivalent estimate. However, if the user generates a

single 25,000 module and multiplies it by four to account for 100,000 SLOC, only

844.8 manmonths are estimated. This difference is caused by the non-linear

relationship between size and effort, As size increases, effort increases at an

increasing rate and more effort is required.

A project with several modules developed dependently (i.e. run in the

same REVIC data file) takes proportionately more time than the same size

modules developed independently and run in different REVIC data files (38:2).

The exception to this rule if is the Ada development mode is used since its effort

equation has an exponent less than one. Consequently, it is recommended that

Ada developed modules, which will be integrated with other modules, should be

estimated in separate REVIC data files to avoid underestimating effort (34).

Basic Limitations of Model Re-garding CSCls. CSCs. and CSUs. REVIC

does not estimate in terms of CSCls, CSCs, or CSUts. Accordingly, the user

must specify modules which adequately describe the effort under consideration.

Recommended Estimatinq Range for M)del. According to the REVIC
model developer, the recommended estimating range is from approximately 500

to 130,000 SLOC per REVIC data file (34). As a result, a project with four

50,000 SLOC CSCIs (totaling 200,000 SLOC) should not be run in the same

70

data file since the data f:e size exceeds 130,000 SLOC. In this situation, the

user should run the CSCIs in different data fi!es and adjust the default DT&E

rate to account for integration costs.

For example, if the user wants to estimate the development and

integration costs of three CSCIs run in separate data files, the DT&E default rate

should be increased by three percent for each CSCI integration. For this

example, the default DT&E rate would be increased from 22% to 28% for each

data file However, this adjustment is not necessary when the Ada

Devw, ,pment Mode is selected because the associated equation was calibrated

on data which included CSCI integration costs (34).

SASET. SASET assumes effort increases at a linear rate with respect

Swith sizrc " . - core of SASET's estimate was pr.sviously defined as size,

softwart. a', .nd software class. SASET assigns a value for softwa-e type and

"class whir;i, is multiplied by size to estimate development effort. Figures 4-21

and 4. 22 illustrate the relationship between size and effort for each software

,t. 2 .; ware class.

T : wi.st,-te how SASET calt.ulates total effort. Figure 4-21 shows that a

"0G.1U.;L0 SLOG syste'i,,; prc,ect results 10 330,000 manhours. Figure 4-22 shows

thaT 3 100,000 SLOC rarwed flight project results in 300,000 manhours. As a

mrsu;t, SA•E[. will provide •, estimare of 660,000 manhours for a 100,000

SLOC manned flir 1, systes• .roject (ass u..ing all other facto- and P, .ali,.

equal one).

71

-" ' , . I

.a. , r. ... r l AlID4IIf. ~ . ~

3S50000

300000 - SYSTEMS

250000 --------- APPUCA
""- O SUPPORT

o 200000

to 150000

'U
100000

-

0 ~ -0 -+- - I i I -- i 4 .- -

10 20 30 40 50 60 70 80 90 100

SLOC (000)

Figure 4-21. Functional Relationship Between Size and Effort for Various
Software Types in SASET

; ~~300000 •j
0---O-----

MANNEI) FL

,-- . ---- UNMANNEO Ft

250000 AVIONiCS

-X- SUBMARINE

200000 -------- OUNO

COMMERCIAL

150')000

100000 ×-

50000 -_

0-
10 ;.u 30 40 se 60 70 80 90 10C

SLOC (0001

Figure 4-22. Functional Relations=iuip Between Size and Effort for Various
Software Classes in SASET

72

It can be deduced from Figures 4-21 and 4-22 that effort increases at a

linear rate with respect to size when all complexity factors (SBM and SSBM) and

penalties (schedule and integration) are held constant. However, the rate or

slope at which effort increase can greatly vary droending upon the software type

and class. As size increases, the differences in effort becomes more

t •pronounced. The reader should note this assumption of linearity assumes that

all complexity factors and penalties are held constant. This will rarely be the

case when running the model because as the size of the project and CSCIs

increase, the project will become more complex.

Impact of Breaking a Singae Large CSCI into Multiple Smaller OSCIs.

SASET allows the user to break projects into multiple CSCls; however, total

'I -development effort will increase due to the assessment of integration penalties.

Integration penalties are only assessed at the CSCI level and are independent

of the number of CSCs within a CSCI. SASET assigns an integration penalty of

3 to 12% on the effort for each CSCl, depending on the value of the integratiolI
complexity factors. Table 4-24 illustrates the impact of breaking a large CSCI

into multiple smaller CSCIs.

Table 4-24. Impact of Breaking Large CSCI Into Multiple Smaller CSCIs in SASET

IN- hORaf I~ "Mh~at~.. WO! --- W"Mk

1 100,000 SLOC 170,020 hour 170,020 hours 31.8 mor.L:s 31.8 months

2 50,000 SLOC 176,666 hours 192,103 hours 35.2 months 35.2 months

4 25,000 SLOC 178,984 hours 194,623 hours 32.0 months 32.0 months

10 10,000 SLOC 182,848 hour 198,825 hours 32.2 months 32.2 months
•,5bump•Dg..: Size: 100,0CC SLOG SW Type: Applications SNV Class: Ground

Default values for all oilier inputs.

73

dI

Although total development effort increases, the majority of the increase

occurs when the effort is split from one to two C, 31s. The only reason the effort

for four CSCIs is greater than for twc CSCls is because SASET increases the

value of the Software Budget Multiplier (calculated from Tier 1 inputs) as the

number of CSCIs increases. However, the impact of the increased SBM value is

not significant.

The impact of breaking a project down into more CSCIs on schedule is

less straightforward. Table 4-24 shows that breaking the project into two CSCIs

of 50,000 SLOC generates a schedule of 35.2 months. However, a project of

four CSCIs of 25,000 SLOC each generates a schedule of 32 months. This
occurs because large CSCIs are the schedule drivers for multiple CSCI projects.

In a multiple CSCI project, SASET calculates the schedule for each individual

CSCI. The model then extends the schedule for system requirements analysis

and integration and testing because it is a multiple CSCI project. For example,

the one CSCI of 100,000 SLOC had a schedule of 31.8 months. If that CSCI

was part of a multiple CSCI project, SASET would still generate a schedule of

31.8 months for that CSCI but would extend the schedule for system

requirements, system integration, and testing. This explains why the project with

the two larger 50,000 SLOC CSCIs takes more time than the project with four

smaller CSCls.

With this principle in mind, one may question why the ten CSCI project

has a longer schedule than the four CSCI project. This occurs because SASET

assumes requirements analysis on each individual CSCI is started one month

after the previous CSCI (i.e., for a 10 CSCI project the requirements analysis on

the 10th CSCI would be started 9 months after the first CSCI). As a result, even

though the schedule for each individual CSCI in the 10 CSCI project is shorter

74

than the four CSCi project, the schedule for the project is slightly longer because

work on the tenth CSCI is started 9 months after the first CSCl. In summary,

breaking a project into multiple CSCls will increase schedule. However, the

amount of increase is a function of the sizW. of the largest CSC I in the project

and, to a lesser extent, the number of CSCIs in a project (29).

Basic Limitations)f Mode! Reaardina CSCgls, CSCs.andCSUs. SASET

allows the user to describe the project in t.erms of CSCIs and CSCs. I he

number of CSCIs is limited- by the amount of available conventional computer

memory. There is no limit to the number of CSC.s for a CSCI (29).

Recommended Estimotinq Rancle for Model. SASET allows the user to

input CSCls as small as 1 SLOC and as large as 1.2 million SLOC. However, a

Martin Marietta software engineer stated he would be cautious generating

estimates for CSCIs smaller than 500 SLOC or larger than 120,000 SLOC (29).

PRICE-S. PRICE-S generally assumes development efiort increases at a

decreasing rate as project size increases. However, according to a PRICE-S

model developer, the model estimates effort in :i relatively linear manner between

40,000 to 6n,000 lines of code (30). PRICE-S uses composite descriptors to

model project size. The composite descriptors are primarily a function of

Application, New Design, and New Code. Figures 4-9 through 4-111 graphically

depict the relationship between these factors and relative cost for the project.

Impact of Breaking a Single Lar. eCSC..Linto Multiole Smaller CSCls. The

model allows the user to break large projects into multiple C3ls. Developnont

time for individuel CSCIs decreases as CSCI size decreases. However, total

development effort for multiple CSCIs may be greater or less than the effort

associated with a single, larg. C.:£Cl depending on how much system integration

elfort is required. PRICE-S calculates effort. for system integration based on

75

contributions from each CSCI. This contribution is a function of Modified Source

Lines of Code, weighted Applicotion, Platform, Ut~lization, Productivity Factor,

External Integraticn Factor, and schedule (27TD-1 -62).

. , : Table 4-25 illustrates the impact of breaking a large CSCI into multiple

,sma ...er CSCIs.

Table 4-25. Impact r'0 Bo-ýaking Lairge CSCI Into Multiple Smaller CSC. in PRICE-S

1 1 00,00) ',ne SCI L 226.3 a 0,0 1226.8
.. 00. ,ir. C :, 1168.2 106.9 1275.2

24 5,000 lintt ""SC ; 07.3 12119.7

" 1C -0'00010 i-, ,;SCs 1)E. 6.4 1071.1 '1174. 1

Aisurmq'nbW u Sý:e: 100,.00 SLOG New De.16n: 1.0
Platfrmn 1.2 New Code: 1.0

]p•D'hicdton. 6 1i Prcciuctivity I:F tor: 5.0
SOR: Mar 94 (,9 rnwooVi In tutwit) Lanriuagp. Ada

INTEGF/INTEGI: .5 Delauft valuom fom all other inputs

.. r...Modeleqardin. ,-.,,.SCs. d_.OSUs. PRICI-S

i'1v,, tht Uselr to describe projects Ir terms of ,Sls and CS. s. The number

of CSCls is limited only by the amount of availabie memory on the computer
used to , t.. , ,:,tiat,: (30). Wfifhin The PRICE-S model, CSCs are

Iassociated on!, •b U',..elopment (t. (A maximum of 25 CSCs are permitted

' " :I2

.................. fo......... Mo...... Valid SLOC inputs for
1 f4 on Or .-d J99 ,999 lines of code. However, two factors

S... 0n l&iii :1 'e *w :arqe p:iruects. Specifically, the model will noi allow any

3715

development phase to cxceed five years and the total development effort cannot

exceed 20 years (30). According to PRICE-S personnel, ý general rule is to

divide the project into logicai, manageabl'a CSCls (30). The recommended

ostimating range is from approximately 5000 to 200,000 SLOG; however, the

model has been successfully used foir significantly larger CSCls (39). For small

projects (less than 1000 lines of code), it was suggested that users bypass the

miodel and simnply applying company-speczific measures such as lines of code per

hour to calculate the cost (30).

SEER-SEM. SEER-SEM assumes development effort incre~ases at an

increasing rate as project size increases. This effect is explained by the

exponent associated with a key equation used to estimate development effort:

Effort1 0. 4S, 'D 04 ~ 1

where:
Se = Effective Size measured in SLOC

Ctb = Basic Technology Constant
f ~ Composile Adjustment Factor obiained from several environmental

factors

The exponent associated with "CEffective Size" is greater than 1.0 which inmplies

an "increasing at an- increasing rate" relationship. Figure 4-23 graphically

depicts the relafionship betwc -.n size and effort for four development modes

based or, SEER-SEM's default settings for a ground-based radar system.

'77

'1400 -

WaO'rf.,,ll
1200 Ada Full

1000 . r- .

- Goo-Prl~p

t -

2,00

10 20 30 40 50 60 '70 so 90

SLOG (000)

Figure 4-23. Functional Relationship Between Size and Effort for SEER-SEM

Imp~act of Breaking a Sinole Large CSCI into Multiple Smaller CSC Is.

SEE.R-SEM allow,, the user to break large projects into multiple CSCIs.

Development time for individual CSCIs decreases as CSCI size decreases if no

CSCI integration is required. However, total development effort for multiple

CSCI projects may be greater or less than the effort associated with a single,

large CSCI project depending on the level of CMC integration. Table 4-26

illustrates ihe impact of breaking a koi-ge CSCI into multiple smaller CSCIs.

Basic Limitations of Model Regardin SCls. (gSCs. and CSUs. SEER-

QUEM allows th~e user to Jescribe projects in ternms OT CSC is, CS Cs, and CSUs.

The number of CSCIs, CSCs, and CSUs is litnited only by ttl3 amount of

available memory on the computer used to genarate the estimate (32)

78

S........ n•mr•n•J.. : •• , <'- •

Table 4-26. Impact of Breaking Large CSCI Into Multiple Smaller CSCIs
in SEER-SEM

1 1',U,000 SLOG 1448.1 1448.2 51.4 51.4

2 50,000 SLOC 1260.6 1287.0 39.0 39.5

4 25,100 SLOG 1007.4 1166.4 29.5 30.8

16 10.000 SLOG 913.7 1086.0 20.5 23.1

Assumptions: Size: 100,000 SLOC New Code: 100%

Platform: Ground Development Method: Waterfall

Application: Radar Development Standard: 2167A

Default values for all other inp•its

Recommended Estimating Range for Model. SEER-SEM allows the

user to input CSCIs as small as 1 SLOC and as large as 100 million SLOC.

However, the model developer stated the recommended estimating range is from

2,000 to 200,000 SLOC at the CSCI level. He further stated SEER-SEM was

designed to model and simulate reality and that users should specify the CSCI

size that is anticipated for the actual software development (33). According to

the model developer, the lpper bound was established since "software

engineering studies have shown the efficient range for CSCls is less than

100,000 lines and that CSCIs over 200,000 tend to never get completed

properly" (33). A, 3EER Technologies support technician indicated the most

current version of SEER-SEM is not as limited at the low end when using the

function sizing mode (32). (Note: This effort did not examine the function sizing

capabilities of SEER-.SEM).

(9

Finding #6. Impact of Schedule Compression and Extensions

Software cost models usually follow one of two "schools of thought" when

calculating cost and schedule estimates: minimum development time or minimum

development effort. Minimum development time is the shortest time in which the

develuper can complete the project while simultaneously satisfying size, staffing,

and other project constraints (19:5-6). Estimates based on the minimum

development time concept are expected to result in higher total development

costs since the project requires maximum effort to satisfy the minimum

development time constraint. Conversely, the minimum development effort

concept does not constrain the schedule and seeks to minimize total

development effort based on an "optimal" schedule generated by the model.

This distinction is important since it impacts how models account for

schedule compression and stretchouts. For example, users cannot compress

the schedule generated by a minimum development time model because (by

definition) the schedule is already at a minimum. Software cost models also

have different assumptions regarding schedule inefficiencies. A schedule

inefficiency occurs when the user defines a development schedule that differs

from the "optimal" schedule generated by the model. Some models assume total

development effort increases when the schedule is stretched out; whereas other

models assume total development effort decreases. These differences in

assumptions can have a dramatic impact on estimates produced by the models.

As a result, users should understand how changes in the development schedule

will impact the project's cost.

The models were reviewed to determine if schedule compression and

oxtensions were permitted. Model assumptions regarding schedule inefficiencies

and their impact were also identified. Table 4-27 summarizes this review.

80

, • j.: ,:-.

Table 4-27. Impact of Schedule Compression and Extensions

Does Model Allow Schedule
Compression/Exttnsion s

Impact of Compretssed Increases Increases Effort Increases Effort Decreases Effort
Schedules on Total Effort Effort See Note I See Note 2
Impact of ExtendedSchedule of Totad EIncreases increases Effort Increases Effort , creases EffortSchedules on Total Effort

OEffort

Note 1: SASET does not allow the user to compress the schedule for multiple CSCI projects.
Note 2: SEER-SEM calculates a minimum development time schedule; however, schedule can be compressed

by reducing the probability of the most likely estimate from 50% to lower levels such as 30% or 40%.

REVIC. REVIC allows both schedule compression and extensions. The

user may compress REVIC's nominal schedule up to 75% or infinitely extend the

schedule. No schedule penalties are applied if the user-defined schedule is

within m-5% or +30% of REVIC's nominal schedule. However, total development

effort will always increo e if the user-defined schedule is outside this range.

REVIC multiplies the total development effort by a schedule penalty factor based

on the amount of schedule compression or extension. Table 4-28 identifies the

schedule penalty factors assessed by REVIC.

Table 4-28. Schedule Penalty Factors for REVIC (1:467)

W, Asr.neld Sohouli "'m men"t

75% < REVIC's Nominal Schedule < 85% 1.23

85% < REVIC's Nominal Schedule < 95% 1.08

95% < REVIC's Nominal Schedule < 130% 1.00

130% < REVIC's Nominal Schedule < 160% 1.04

160% < REVIC's Nominal Schedule 1.10

81

REVIC's schedule penalties are discrete and assessed in a step function

manner. For example, if the schedule is compressed to 85% of REVIC's nominal

schedule, an 8% schedule penalty is applied. However, if the schedule is

compressed to 84%, the schedule penalty jumps to 23%. No schedule extension

penalties are assessed unless the user-defined schedule is greater than 125%

of REVIC's nominal schedule. The maximum schedule penalty for extending the

schedule is 10%. Due to the step function approach REVIC uses to assess

schedule penalties, users should be aware of these special regions when
compressing or extending schedules generated by REVIC.

SASET. The user may compress the schedule to 50% of the SASET's

nominal schedule for single CSCI projects; however, no schedule compression is

permitted for multiple CSCI projects. The schedule can be infinitely extended for

single and multiple CSCI projects.

If the user specifies only a start date, SASET calculates the development

effort based on "optimal" schedule and no schedule penalties are assessed. If

the user inputs both a start and finish date for the project, SASET compares the

user-defined schedule to the schedule generated by the model and assesses

penalties for any schedule inefficiencies.

For example, assume the user inputs a 48 month development schedule

and SASET calculates an optimal schedule of 60 months. The ratio of the user-

defined schedule and optimal schedule is 0.80 (48 months / SD months). SASET

refers to an internal lookup table and assesses a schedule penalty based on the

ratio. For this example, a ratio of 0.8 corresponds to a penalty factor of 1.10

which increases total development effort by 10%.

Schedule compression has a much more pronounced impact on the

estimate than extending the schedule by the same amount. Compressing the

82

schedule to 50% of the optimal schedule adds 25% to the estimate; however,

extending the schedule by the same amount adds only 10% to the schedule.

Figure 4-24 illustrates the schedule penalties associated with various schedules.

1.25

1.2

Z 1.15 ca.not
Compress

4) Schedule /
Cl More Than
4 1.1 '50%

1.05
• i /

I- I - I I

0 0.5 1 1.5 2 2.5 3

Schedule Ratio

Figure 4-24. Schedule Penalty Factors for SASET

SASET assigns schedule penalties somewhat differently for multiple CSCI

projects. Schedule penalties are assessed if the user-defined schedule differs

from the optimal schedule. However, schedule penalties are ssessed at the

project levei and not at the CSCi level. Although iASn- I allows schedule

extensions, schedule compression is not permitted for multiple CSCI projects.

Users can work around this limitation by defining several single CSCI projects

and compressing the schedule of each CSCI. However, this approach will not

include integration costs since SASET does not calculate integration penalties

for single CSCI projects.

83

.. . .1

SASET also assigns a schedule penalty if the sequence of CSCls is less

than optimal. The model assumes the optimal sequence of CSCIs is from the

largest to smallest CSCI. For example, if there are three CSCIs with sizes of

30,000, 50,000, and 70,000 SLOC; the optimal sequence is 70,000, 50,000,

and 30,000 SLOC. A sequence specified in any other order is less than optimal

and a schedule penalty is assigned (29). The user may specify a CSCI

sequence appropriate for the development project; otherwise, the model

assumes the optimal sequence.

PRICE-S. The user may compress or extend the model's reference

schedule by entering activity milestone dates different from those calculated by

the model. PRICE-S assumes all schedule inefficiencies result in increased

project costs; however, no penalties are assessed if the user-defined schedule is

within +/- 10% of the model's reference schedule.

PRICE-S initially calculates an internal reference schedule based on the

CPLXl (Complexity 1) input and the SDR or SSR date. This reference schedule

is the "normal" development schedule when no time constraints are present and

serves as a reference for estimating the added costs when schedule constraints

are imposed (31:5).

PRICE-S differs from REVIC and SASET in that the user may compress

or extend specific development phases as well as total development time. This

is accomplishAd by Antenna i Ar-dafined dle for key deve.,lop,,,-,,•ment mile.,tn.ý,

such as the PDR, CDR, or PCA. PRICE-S then adjusts the reference schedule

and costs to account for the effects of user-defined dates. Schedule penalties

associated with user-defined dates can be removed by setting the Schedule

Phase Multiplier (SMULT) equal to zero for that phase. Like SASET, schedule

compress',on has a much more pronounced impact on the estimate than

84

extending the schedule by the same amount. Figure 4-25 illustrates the effects

of schedule constraints on cost for PRICE-S.

RELATIVECOSTS

APP002

APP. a21

120% I '

0 .50. 0 1.00 i.2O 1.40 1 0 "0 2.0

RELAr"VK SIEO.LE LENGTH
(% OF P40RMA•. SC,*DUX

01

Figure 4-25. Effect of Schedule Constraints on Cost for PRICE-S (27:0-1-60)

SEER-SEM. Although SEER-SEM calcLates the optimal (minimum)

development schedule, users can `compress" the schedule by reducing the

most likely estimate from 50% to a lower value (33). This is accomplished by

adjusting the "Probability' parameter. Schedule compression results in less

total development time versus the standard minimum development time solution;

however, the likelihood of completirj the project on time also decreases as the

"Probability" parameter is reduced.

The model allows the user to infinitely extend the schedule. SEER-SEM

differs from the other models regarding schedule extensions. While REVIC,

85-

i f 1 ~ - W f1 , U 4 U

SASET, and PRICE-S assume total development time increases if the user-

defined schedule exceeds the model's reference schedule, SEER-SEM assumes

total development effort decreases when the user-defined schedule is longer

than minimum development time solution. This effect is due in part to the

model's assumption regarding optimum staffing rates. When the schedule is

stretched out, the model assumes staffing levels can be 1c-viered resulting in

lower total development costs.

Estimates generated by SEER-SEM are very sensitive to small changes

in the development schedule, Table 4-29 liustrates the impact of stretching out

full-scale implementation of a 100,000 line ground-based radar project.

Table 4-29. Impact of Stretching Out Full-Scale Implementation for SEER-SEM i

Development Effort 8
(manmonths) 1448 1227 1058 810 518

P month 51.4 55.9 60.2 68.8 85.9
(months)

For the SEER-SEM model, total development effect decreases

significantly as the development schedule is extended. Since the model is

based on the Rayleigh curve, the user can theoetically extend the schedule

infinitely and total development effort will approarh zero. However, there are

several practical limitations when perfoi ming schedule tradeoffs. Most

importantly, it is unrealistic to assume a project can be stretched out indefinitely

since such projects would never be undertaken. According to the SEER-SEM

user manual, the maximum development schedule shoi ild not exceed 60 months

from Software Requirements Analysis through CSCI integration and Testing.

f =6

Phases prior to and subsequent to these phases are in addition to thr -5n month

schedule (19:5-2).

Users should also be aware of potential "warning signs" which indicate

the schedule has been stretched out too far. According to SEER Technologies

personnel, three factors should be monitored. If the "Peak Staff' drops below

five persons or the "Effective Complexity" rating drops below 4.0, the user has

probably extended the schedule beyond the feasible region (32, 36).

Additionally, the user has probably defined an unrealistic set of parameters if the

"Basic Techn.. ogy" or "Effective Technology" are not within a range of 1,000 to

10,000 (36). Future versions of SEER-SEM will address the impact of unrealistic

schedule extensions by providing constraints for minimum staffing levels (32).

The model developer also provided the following insights when stretching

the development schedule.

Stretch the schedule only if you will manage the project that way from
the bI..ginning (they do this in Europe ... much less in the DoD where
minimum time is the norm). Never stretch the schedule more than
25 - 40% (unless you have a real case where the project will be managed
that way). Never stretch the schedule to the point w;:•re the average staff
is less than about 2 - 3 people (peak about 5 people) unless you know the
people. (33)

87

iI
Finding #7. Distinctive Characteristics of Mode[Data Bases

REVIC. With the exception of the Ada Development Mode, REVIC was

calibrated with "calibration points" provided by Hughes Electro-optical Data

Systems Groups (EDSG) (34). The size and characteristics of the EDSG data

base were unknown; however, all of the projects were government programs.

According the model developer, the Ada Development Mode equation

was calibrated by Bob ,eff of the former Air Force Contract Management

Division (34). The data base consisted of approximately 20 Alda CSCIs

extracted from Boehm's Adi COCOMO data oase a.i.d a large Army project. The

Army project was a 1.2 million line effort that was broken down into multiple,

sniaJIor CSCIs (34). REVIC's equations were validated on a data base of 281

completed contracts with software involvement from Rome Air Development

Center (34).

SASET. SASET's equations are based on a data base of 500 CSCIs

made up of Martin Marietta's projects and others it gathered from industry (29).

More than 90% of the data base consisted of embedded military applications.

Most of t, e CSCIs were programmed in third generation languages

(predominantly FORTRAN) and some Assembly code. The size of the CSCIs

ranged from 700 to 90,000 lines of code with an average of 35,000 to 45,000

lines of code (29).

P . The PRICE-S model was developed on project data obtained

from a variety of commercial developers such as Lockheed, Raytheon, and

General Dynamics (30). Currently, all projects used in the model's equations are

commercial in nature. However, according to PRICE-S personnel, three

software data basas are maintained (30). The initial data base is the one on

which the model equations were developed. The second data base is used to

88

evaluate the model's equations and the third is used by operational personnel to

test new and innovative changes in'the software development area. For

example, information related to object-oriented programming is collected and

retained in the third data base for potential use in later versions of

"PRICE-S (30).

The model equations are evaluated yearly; however, this does not

necessarily mean the equations are changed that often. Revisions and

enhancements are made as necessary. All commonly recognized pogramming

languages are represented by projects in the data base.

SEER-SEM. The internal equations of SEER-SEM are based on a

mathematical model developed by Dr. Raodall W. Jensen plus numerous

extensions and enhancements to reflect changes in software development

practices and techniques (33). SEER-SEM also relies on "knowledge bases" to

provide detailed inputs for model estimates. According to the model's user

manual, a knowledge basc provides detailed input values based on a general

description of the program (37:Appendix A). The user enters four inputs

describing the program (Platform, Application, Development Method, and

Development Standard) and the model selects the appropriate setting for the

detailed inputs. The user may modify any of the detailed parameters if

additional information is available.

The knowledge bases are heuristic in nature and frequently updated to

reflect the latest software development trends (36). Organizations are evaluated

to determine what changes are occurring in the software development

environment and then knowledge bases are adjusted to account for these

changes. For example, if today's software developers use more in"Aern

development practices and automated tools than in the past, the inputs for the

89

&Z,
..k4lLi~lf

knowledge bases are adjusted to reflect these changes (36). Both commercial

and military projects were used to develop SEER-SEM's knowledge bases and

all commonly used programming languages (FORTRAN, Assembly, Ada, etc.)

are represented (32).

90

i -.. .T .. i '""' '" ' • .. • - - 1 r...• i - 1 1 " r • • i

Finding #8. Results of Baseline Test Case

A simple baseline test case was developed to gain a better understanding

of why the models genei'ate different estimates. The purpose of the test case

was not to quantify the differences between model estimates, but to explain the

underlying reasons for the differences. Additionally, it was hoped this effort

would result in greater insight into the feasibility of normalizing the models and

the difficulties associated with normalization efforts.

Test Case Limitations. Due to the time constraints associated with this

research effort, a simple, generic development project was proposed. This

approach is a significant limitation since the case does not iepresent the actual

complexity associated with a real development project. However, in the

researchers' opinion, it was deemed adequate to illustrate the differences

between model estimates.

Test Case Scenario. The following information provides details

regarding a hypothetical software development project. This hypothetical case

is a modified version of a baseline test case presented in Sydney Rowland's "A

Comparative Analysis of the GE PRICE-S and the GEl Systern-4 Cost Estimating

Models" (40). The assumptions for the case inct 'e:

1. The development project will result in an aircraft avionics system.

Tailored DoD-STD-21I67A documentation is required.

2. The waterfall life cycle approach is used and integration complexity for

all CSCIs is average.

3. The project consists of three CSGIs which are referred to as CSC Ii,

CSCI2, and CSC13. Each CSCI is 100% New Design and New Code.

4. CSCI1 is programmed in Ada and consists of two CSCs developed by

average personnel with nominal sottware tools. The first CSC has 20,000 SLOC

and the second CSC consists of 30,000 SLOC.

5. CSC12 is programmed in Assembly by above average programmers

with nominal software tools. The CSCI has 80,000 SLOG.

6. CSC13 is programmed in Ada by average personnel with nominal

software tools. The CSCI has 45,000 SLOG.

7. 'The project is estimated from System Software Requirements Analysis

through System Test.

8. The development teams work 152 manhours per month.

Model Inputs. Where possible, suggestions from model vendors and

developers were obtained during development of the baseline test case. Unless

noted otherwise, the researchers used default input values for each model. See

Table 4-30 for a summary of model inputs used for the baseline test case and

Appendix B for detailed model input sheets.

REVIC. Each CSCI was loaded into a separate data file to avoid

exceeding the recommended estimating range of the model. As a result, three

data files were created for the REVIC estimate. The first data file, which

represented CSCII, consisted of two CSCs. Integration was not added to CSCIs

i and 3 because the Ada Development Mode equation was calibrated on CSCIs

which includes integratioi effort. The embedded development mode was used

for CSCI2 since the entire CSCI was programmed in Assembly. The DT&E

parameter for CSCI2 was also changed from 22% to 28% to account for

integration with the other CSCIs.

92

-- W.

Table 4-30. Summary of Key Model Inputs for Baseline Test Case

CSCII Separate Cata File for One Data File for I otal One Data Flc, for Total One Data File for Total

Each CSCI Estimate Estimate Estimate
2 CSCs loaded into 2 CSCs 2 CS~s 2 CSCs

*into this file CSC 1: 20K SLOC CSC1: 20K SLOC CSCI: 20K SLOC
C SCi. 20K SLOC CSC2: 30K SLOC CSC2: 30K SLOC CSC2: 30K SLOC

CSC2: 30K SLOC SJW Class: Avionics Avionics Platform PROFAC. 5.00
Ada 0ev Mode S/W Type: Application Flight Application APPIL: 5.50
RELY: HI SAN Documentation- Ada Development PLTFM: 1.80

Complex Method SSR Date: 894

Default values for all Man Interaction: 21 67A muin Develop.- INTEGE & INTEGI: 0.50
other inputs Complex ment Standard CPLX1 = 1.00

Defau.t values for all Default values for all Default values for all

___________________other inputs other inputs ote ipt

CSC12 Separatec Data File SAN .l'ass- Avionics Avionics Platform PROFAC 5.00

Embedded 0ev Mode S/W Type: Application Flight Application APPL. 5 50
PCAP HI SAN Experience Waleifall Development PLTFM 1 80
LEXP: HI Simple Metlmoa SSR Dale 894
RELY- HI Programming 2167A rmin Develop- INTEGE & INTEGI 0 50
DT&E: 28% Language- Complex rnent Standard CPLXI 0 80
80K SLOG SAN Documentation. Programmer Capability. 80K SLOC

Complex Nam, HI, VHI

Default values for all Man Interaction: Programmer Lang Exp. Non-Execu~table SLOG 0
other Inputs Complex HI. VHI. EHI

80K SLOC Language Type: Default values for all
HI, HI, VHI other inputs

Default values for all H0K SLOG
olher inputs

Default valuet, for all

______________ ther nMpUtS ________

CSC13 Separate Data File SAN Claws: Avionics Avionics Platform PROFAL; 50I,

Ada Development SAN Type: Application Flight Application APPL 5 50
Mode

RELY: HI 51WV Documentation. Ada Development PLTFM 1 60
Complex Method SSP. Date. 894

45I("'.LOC NMa n In toria cltIon,: 21'.7A mini Davelop- INTEGL & lNTEGI 0 ý0
Complex ment Standard CPLX1 1 GO

Default values for all 45K SLOC 45K SLOG
other inputs I

Default values for all Default values for all

I _ _- oth[er inputs other 1n9t L.

93

Default values were used for all inputs with the exception of PCAP, LEXP,

RELY, and DT&E. PCAP and LEXP were adjusted to HI for CSCI 2 to account

for improved programmer capabilities. The model developer recommended

adjusting RELY to HI for the baseline case (34). (See Appendix B for model

input sheets.)

SASET. All CSCIs were run in the same file. The avionics SNW Class

was selected and the S/W Type was Applications. Default input values were

used for all inputs with the exception of software documentation, man

interaction, software experience, and programming language. Software

documer.tation was set to COMPLEX since tailored DoD-STD-2167a standards

apply. The man interaction input was adjusted to COMPLEX to account for the

avionics S/W Class. For CSC12, the software experience input was set to

SIMPLE to account for improved programmer capabilities with regard to

Assembly programming; whereas, the programming language was adjusted to

COMPLEX to reflect the use of the Assembly language. (See Appendix B for

model input sheets.)

PRICE-S. Default values were used for all inputs with the exception of

PROFAC, APPL, SSR date, and CPLX1. Since the model was not calibrated to

a specific development environment, subjective decisions were made regarding

* several key input parameters such as PROFAC and APPL. After reviewing the

SPRICE- I Refeience Manual and related documentation, values for the PROFAC

and APPL were 5.00 and 5.50, respectively. INTEGE and INTEGI inputs were

set to 0.50. Lacking any information to the contrary, these inputs were deemed

adequate for this effort; however, users should be aware of the sensitivity of

these parametei s and their impact on the resulting estimate.

The SSR date was adjusted to ensure no schedule penalties were

94

encountered. CPLX1 was adjusted for CSC12 to account for differences in

programmer capabilities. (See Appendix B for model input sheets.)

SEER-SEM. The avionics platform and flight application knowledge

bases were selected to represent the avionics flight system. The Ada

Development method was selected for CSCls 1 and 3; whereas, the waterfall

development method was selected for CSCI 2. The development standard was

2167Anin for all CSCIs. Knowledge base inputs for CSCI2 were adjusted to

account for differences in programmer capabilities. (See Appendix B for model

input sheets.)

Summary of Model Estimates. Model estimates for each CSCI and the

total project are summarized in Table 4-39.

Table 4-31. Baseline Test Case Results for Each Model in Manmonths

Est~ma..l K S. PRICE-S
CSCI1 416.0 1104.2 1429.5 719.4
CSCI 2 837.2 545.3 520.2 1013.0
CSCI J 376.7 993.8 1211.8 634.0
Project 1648.5 2643.3 3161.5 2366.4 d

Discussion of Results. SASET and PRICE-S provided significantly

higher estimates for CSCls 1 and 3 compared to REVIC and SEER-SEM.

However, SASET and PRICE-S provided lower estimates for CSCI2. The

following paragraphs discuss some of the underlying reasons for these

differences.

Excluded Development Phases/Cost Elements. REVIC does not include

the System Requirements/Design phase or the necessary effort to meet DoD-

STD-2167A documentation requirements. These factors contribute to REVIC's

95

low estimates for CSCIs 1 and 3. When using REVIC as a cross-check to a

different model, the user would have to estimate and add additional effort for

these omissions.

Treatment of Different Langjuages. It seemed unusual that SASET and

PRICE-S provided much lower estimates for CSCI 2 despite being higher for

CSCIs 1 and 3. This is due in part to their treatment of the Assembly language.

SASET and PRICE-S are more sensitive to language differences than REVIC or

SEER-SEM. SASET and PRICE-S assume programmers can write more lines of

Assembly code than Ada code for a given period of time. For example, SASET

converted the 80,000 lines of Assembly to 26,667 lines of a "Equivalent New

HOL" and based its estimate on this number.

REVIC and SEER-SEM are less language depend-nt and do ncf make

similar adjustments for the Assembly language. "'or example, with the exception

of using the Ada Development Mode for Ada code, REVIC does not differentiate

between languages. As a result, it may be appropriate to research a proper

"software language conversion metric to account for language differences when

using REVIC.

Sensitivity of Inputs/Cost Drivers. Even with this simple scenario, there

was obvious subjectivity regarding appropriate input values. For example,

subjective values for PROFAC and APPL were used for PRICE-S. Yet, the

model,,,, is very sensitiive to small changes in these parameters and small

favorable adjustments can significantly lower the estimate. With REVIC, the

default value for MRES was used; however, based on the model's definition for

this input, a case could be made to adjust this value (which would have

dramatically increased REVIC's estimates). Similar points could be made about

various inputs for SAS-ET and SEER-SEM. Thus, a different person could use

96

the same test case and generate completely different estimates.

in the te.st case, it appears that one of the reasons why SASET and

PRICE-S generally provide higher estimates is their sensitivity to the Platorrn

selected. During our research efforts and sensitivity analyses with the models,

we noted adjustments to the PRICE-S Platform input and SASET Class of

Software input significantly impacted the estimates. For example, SASET's

equations reveal that an avionics project estimate will be approximately 80%

greater than a ground based system project estimate. SEER-SEM does make

adjustments for PLATFORM by changing the knowledge base, but these

adjustments do not appear to be by the same order of magnitude as SASET or

PRICE-S.

The selection of the development mode is another contributing factor

explaining REVIC's lower estimates for CSCIs 1 and 3. The reader should recall

each development uses a different development effort equation. Specifically,

the Ada Development mode, used in CSCIs 1 and 3, has an exponent less than

1 where effort increases at a decreasing rate as effort increases. This is

significant because the Ada development mode estimates less effort than the

embedded or semidetached development modes (for CSCIs greater than 20,000
SLOC). Conversely, the embedded development mode equation used for CSCI2

has an exponent of 1.2, The different equations and exponents may explain why

REVIC's estinate fIr CSCi2 are cioser to the estimates calculated by the other

models.

Unanticipated Results. It was anticipated that SEER-SEM would estimate

more development effort than the other models since it is based on the minimum

development time concept. However, this assumption was not accurate for the

baseline test case. SEER-SEM calculated the second lowest project estimate

97

for the four models. Although SEER-SEM's estimates were always higher than

REVIC's estirnates, we cannot explain why it had lower estimates than PRICE--S

or SASET for CSCIs 1 and 3. There may not be as much difference between

SEER-SEM's minimum development time schedule and the other models'

optimal schfudule as originally believed. (See Chapter V, Conclusions and

Recommendations, for more details rugarding this situation.)

Conclusion. Recognizing the limitations of this simple baseline test

case, several underlying reasons for models differences were identified and the

researchers began to appreciate some of the difficulties associated with model

normalization. One problem is that the models require different inputs and,

outside of SLOC, they have different cost drivers and equations. For example,

REVIC's development mode equations are effort drivers, but SASET does not

have development mode equations. This makes it very difficult to adequateiy

quantify the differences between the models.

The proprietary nature of SEER-SEM and PRICE-S also contribute to

difficulties in comparing models. Although many of PRICE-S and SEER-SEM

equutions are published, many other equations are proprietary. Consequently, it

is difficult to fully understand why these models provide different estimates than

SASET and REVIC (whose equations are non-proprietary).

Project complexity also impacted the bas, -line test case. As project

~mpexity and roalism increasad, ilt becamne very diffcl drtfigeuvln

input values for each mcdel. The initial baseline test case developed for this

project was much more complex; however, it had to be simplified due to the

incredible number of differencc ; between the models. As a result, a very simple

baseline case was used to avoid biasing the test case toward one of the models

and allow the researchers to input logical and consistent values for each model.

98

Another difficulty with normalization is identifying an appropriate

reference model. In other words, what model do you plan to normalize the

model result to? Should the analyst identify SEER-SEM as the reference model

and normalize all the other models to it or should REVIC be the reference

model?

Furthermore, assuming each model had equivalent cost/effort drivers and

identical parameters values, the models would provide different estimaies since

they were calibrated on different data bases. For example, the data base used

to calibrate REVIC was significantly different than that used by PRICE-S.

Likewise, SASET's data base bears little semblance to the data base used by

Dr. Jensen to develop the initial SEER-SEM equations.

This does not imply it is useloss to try to understand why models give

different estimates. On the contrary, it can be helpful to understand these

differences if more than one model is being used to estimate the same project.

However, based on the effort expended during this baseline test case, it became

obvious that model normalization is an exercise in futility for the average

software cost model user. It is the rasearchers' opinion that the differences in

definitior - for model inputs, internal equations, 'nd key assumptions make it

nearly impossible to normalize the models (without indiscriminlately adjusting

model inputs to gat equivalent estimates).

Ultimate!%y, we f ee users should become . . ffit-,-,,, with

two models. As the user becomes more experienced with the models, he or she

should gain a great deal of insight in the capabiiities of the model, the

appropriate value for inputs, and proper calibration settings based on the project

being cstirnat..d. This approach is more logical and defensible than running four

different models and scee'ing the model with the desired cross-check estimate.

99

* u nmmm

V. Conclusions and Recommendations

Overview

The purpose of this research effort was to develop a consolidated

document which highlights the differences in definitions, assumptions, and

methodologies used by the REVIC, SASET, PRICE-S, and SEER-SEM cost

models and examines the impact of these differences on the resulting estimates.

Conclusions regarding this effort are addressed in context of the three research

objectives outlined in Chapter I, Introduction. Although many differences

between the models were identified, this document does not cover all software

development issues and is not a comprehensive source. Therefore, several

recommendations for additional research are presented.

Conclusions

Three central research objectives guided this research effort. The

conclusions will be addressed in context of these objectives.

Research Obiective #1. What differences exist between the cost models?

Differences between the models exist at nearly every level. At the onset of this

project, the researchers did not realize the underlying equations and

assumptions of the models were so diverse. However, as the research effort

progressed, these differences became more and more evident.

Each el uses distinctly diff ,- I , ,uations for estimating developmeni

effort. In the case of REVIC, different equations are used within the same model

depending on which development mode is selected. Additionally, the basic

development concept (minimum development time versus minimum development

effort) varied between the models.

100

-_.• =.,= ==•.••'•• , ' • -... " "•' -"A "..

Although the model developers' definitions for source lines of code were

fairly consistent, each model has its own set of input parameters for describing

the software development environment. The researchers determined it was

nearly impossible to do a one-to-one correlation between model inputs and

settled on a broad categorization of key model inputs.

The models also used different methodologies when estimating multiple

CSCI projects and the impact of schedule compression and extensions. For

example, SEER-SEM assumes total development effort decreases if the project

is stretched out; however, the other models assume total development effort

increases if the project is stretched out.

Lastly, the data bases used by each model were significantly different.

Therefore, even if the models had the same underlying assumptions and

equations, the estimates would vary due to differences in data base size,

composition, and project attributes.

Research Obiective #2. How do these differences impact the resulting

cost estimates? Unfortunately, this question could not be answered in

quantitative terms. For example, REVIC did not include a Systems

Requirements Analysis/Design development phase. It was clearly beyond the

researchers' abilities to quantify the dollar impact of this omission. Likewise,

SASET has m-iny more project attributes than the other models; however, the

additional parameters resulted in only minor increases to the model estimate.

As a result, differences were identified in relative terms rather than quantitative

terms where possible.

Research Objective #3. To what degree can we explain and adjust for

differences between cost models? The researchers found it was not particularly

difficult to identify and discuss differences between the models. However, due to

101

the con-)lexity associated with reaistic development scenarios coupled with the

different equations and underlying model assumptions, it is the researchers'

opinion that model normalization is virtually impossible. The simple baseline

test case supports this assertion. Of course, the user could systematically adjust

the various model inputs to generate equivalent estimates. Yet, this approach

defies logic since the user should have initially entered model inputs he or she

deemed appropriate for the development effort.

Recommendations

This research effort did not address all possible facets of software cost

estimating and several areas require additional research. First, one model

developer questioned if many commonly used attributes are still applicable due

to recent improvements in computer hardware (29). For example, additional

research may determine that computer memory, utilization rates, or other factors

are no longer constraining factors for software development projects.

Second, it would be interesting to perform a series of sensitivity analyses

to determine how SEER-SEM's minimum development time solution compares to

the minimum development effort solutions calculated by the other models.

Although SEER-SEM's estimates were expected to be higher than the other

models, the results of the baseline test case indicate this is not always true.

Third, additional research regarding the composition of each model's data

base would also be beneficial. This research effort provided only a brief

overview of the data bases, yet significant differences were highlighted,

Identifying the estimating level (project versus CSCi), programming language,

development contractor, and other distinctive characteristics could provide

102

additional insight into why one model estimates a particular class of software

more accurately than another.

Fourth, this effort focused primarily on how models estimate effort.

Another similar study should be undertaken to determine how the model's

estimate schedules. For example, SASET generally estimated shorter

schedules than REVIC even when it generated higher effort estimates. A

specific issue to address would be the models' assumptions on overlapping

phases and manpower staffing.

Fifth, additional research needs to be accomplished on the feasibility of

normalizaticn. Is it possible to objectively quantify the source of differences

between model estimates? If so, how does one decide which modl to

normalize to and what are the benefits of normalization (does it result in a better

estimate)?

In conclusion, this research effort identified many key similiarities and

differences between four Air Force preferred software cost estimating models. It

is the researchers' opinion that the differences in definitions for model inputs,

internal equations, and key assumptions make it near!y impossible for the

average model user to normalize the models. This does not imply it is useless to

try to understand why models give different estirnate-. It is hoped that this effort

resulted in a useful, consolidated document which explains the technical

characteristics of the models and helps model users understand why the models

produce different estimates.

103

Appendix A: Checklist Used to Examine Cost Models

1. What DoD-STD-2167A phases and activities are included in the estimate
produced by each model?

a. Identify phases and activities specified by Mil Std 21167A.

b. Deiermine what DoD-.'T0-2167A phases and activities are included in the
estimate produced by each model.

c. What are the basic assumptions or default values for the distribution of effort
across the development phases?

d. Can the default allocation percentages be changed by the user?

2. What general dovelopment activities and specific cost elements are

estimated?

a. What generai development activities are included in the model estimates7

b. What specific cost elements are estimated by the model? What do they
mnean or represent'?

c.If the model includes the cost of documentation, is that cost separately
identified?

d. If the model includes the cost of program management, is the cost separately
identified?

3. How does each model define a source line of code and how are
language differcnces accounted for?

a. What is each model's definition for non-Ada source lines of code?

b. Do the models differentiate between Ada and non-Ada SLOG? If so, what
are the model-' definition of "Lines of Code" for Ada?

c. Do the nmodels account for language differences?

104

Emm

4. Which model factors are key cost drivers? What estimating
methodology was used to develop these factors?

a. Categorize important model factors based on personnel capabilities,

development environment, project requirements, and target environment.

b. Identify key cost drivers used by each model to develop estimates (i.e which
factors have the most significant impact on development effort?).

c. how were these factors developed? What estimating methodology was
used? Linear regression or some other statistical method? Expert
Judgment? Heuristics? Composite?

5. How does the model account for schedule compression and

extensions?

a. Does the model allow schedule compression and extensions?

b. What, if any, penalties are assessed when the schedule is compressed or
extended?

c. How sensitive are models to relatively small changes in schedules?

6. What implications does project size have on model output?

a. What is the basic assumption in the model concerning size and effort? Does
effort increase at an increasing or decreasing rate as size increases?

b. What are the basic assumptions in the modei concerning size and number of
CSCIs, CSCs and CSUs in relation to the total effort and schedule? For
example, if the total program is !OOK SLOC, will breaking the project intu
muldiple smaller units result in less or more total effort? Longer or shorter

* e. What are the basic limitations of the model in terms of the size and number of
CSCIs, CSCs and CSUs?

f. Is there a minimum or maximum size for the project or a CSCI? What is the
recommended estimating range for the model?

105

7. Are there any distinctive characteristics about the data base(s) used by

the various models?

a. How many projects were in the database used to develop the model?

b. Did it have any unique characteristics? If yes, how were these special
characteristics normalized in developing the generic model?

c. How much of the database was military systems versus commercial systems?
Embedded systems versus MIS systems?

d. What programming languages were included in the database (% each)?

e. What was the distribution of the records in the database by size (project
level, CSCI, CSC, CSU)?

106

Appendix B: Model Inputs for Baseline Test Case

Sea subsequent pages for model inputs and results for the basoline test

case.

- ,--- ---

MODEL INPUTS AND RESULTS FOR REVIC

198

REVIC MODEL PHASE DISTRIBUTION 08-03-1993 02:55:15
LOC to be developed is 50.0 ODS7 (152 HRS/MM, $ 73.00 /HR)

PHASE & END REVIEW EFFORT SCHEDULE FSP COSTS
(mm) (months) (people)S1W RQMTS ENG (SRR) 37.2 8.2 4.5 413,319PRELIM. DESIGN (PDR)* 71.4 10.7 6.7 792,194CRITICAL DESIGN (CDR)* 90.0 6.9 12.1 998,854CODE & DEBUG (TRR)* 68.3 4.1 16.6 757,751INTEGRATE & TEST (FQT)* 80.7 5.8 14.0 895,524DKV TEST & INT (DT&E) 68.3 7.7 8.9 757,751

TOTALS 416.0 43.4 4,615,394

TotaL Productivity - 161.1 (246.8 prugrammers only) loc/mmEnvironmental Modifier - 1.150 with a NM scheduleTotal Direct Labor Hours - 63,225
ADA Software Development Mode• - Items are included in Total Productivity calculation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY S/W RQMTS ENG PRELTM DSGN PROGR. I & T
(SRR) (PuR) (CDR & TRR) (FQT)RQMTS ANALYSIS 17.13 7.14 4.75 1.61PRODUCT DESIGN 5.21 29.99 9.50 3.22PROGRAMMING 2.23 8.57 87.07 22.28TEST PLANNING 1.49 4.28 9.50 3.23VERIFY & VALIDATE 2.98 5.71 15.83 20.18PROJECT OFFICE 4.47 7.85 11.08 6.46CM/QA 1.49 2.14 11.08 7.26MANUALS 2.23 5.71 9.50 6.46

NOTES, 1.0 MH - 152 HOURS
THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGNAND SOFTWARE CODE & DEBUG.

109

REVIC MODEL RESULTS FOR

-3 SIGMA NOMINAL +3 SIGMA
KDSI 50.0 50.0 50.0
MANMONTHS 416.0 416.0 416.0
SCHEDULE 43.4 43.4 43.4
TOTAL HOURS 63,225 63,225 63,225
TOTAL COSTS $ 4,615,394 4,615,394 $ 4,615,394

STANDARD DEVIATION - 0.000 KDSI

Environmental Factors foz 08-03-1993 02:55:29
ENVIRONMENTAL FACTOR RATING VALUE ENVIRONMENTAL FACTOR RATING VALUE
Analyst Capability NM 1.00 Product Reliability HI 1.15
Programmer Capability NM 1.00 Data Base Size NM 1.00
Applications Experience NM 1.00 Product Complexity NM 1.00
Virtual Machine Experience NM 1.00 Required Reuse NM 1.00
Prog. Language Experience NM 1.00 Modern Programming Practices N11 1.00
Execution Time Constraint NM 1.00 Use Of S/W Tools NM 1.00
main Storage Constraint NM 1.00 Required Security UN 1.00
Virt. Machine Volatility NM 1.00 Mqmt Reserve For Risk VL 1.00
Computer Turnaround Time NM 1.00 Required Schedule NM 1.00
Requirements Volatility NM 1.00 Software Development Mode ADA 1.00
The environmental modifier is 1.150
Equivalent SEER Ctb - 5,707 Cte - 4,963
Version 9.1 - 23 November 1991

110
'1--

REVIC MODEL RESULTS FOR 08-03-1993 02:55:34
CDRL INITIAL PAGE ESTIMATES FOR DOD-STD-2167A/2168

SSDD, SRS, STD, AND STR PAGES - 671 ea.
IRS PAGES a 343

SSDP PAGES - 175
SDD (PRELIMINARY) PAGES - 1666
SDD PAGES (FINAL, WITHOUT LISTINGS) - 5000
STP, CSOM PAGES - 135 ea.
IDD PAGES - 676
SPS, SPM PAGES - 72 ea.
SUM, CRISD PAGES - 67 ea.
FSM PAGES L 53
VDD PAGES APPROXIMATELY 10 PER FORMAL MEDIA RELEASE.

It S/W DEVELOPMENT FOLDER PAGES NOT INCLUDED HERE.

Page counts are approfir=te for each document. See DOD-STD-2167A for
an explanation of the acronyms and a description of their content.

INDEX # NAME LE RP HE
1 20000 20000 20000
2 30000 30000 30000

INDEX # NAME ADSI DM CM IM

"I I
S '9',

0

11

:. tl l

REIVIC MODEL PHASE DISTRIBUT"ION 08-03-1993 02:59:25

LOC to be developed is 80.0 KDSI ,152 HRS/NM, $ 73.00 /HR)

PHASE & END REVIEW EFFORT SCHEDULE fliP COSTS
(mm) (months) (people)

S/W RQMTS ENG (SR!l) 71.8 .0.2 7.1. 796,280
PRELIM. DESIGN (PDR)* .. '; 13.2 I0.4 L,526,204
CRITICAL DESIGN (CDR)* 173.4 8.5 20.5 1.924, 44
CODE & DEBUG (TRR)* 131.6 5.1 25.9 1,459,848
INTEGRATE & TEST (I'QT)* 155.5 7.1 21.9 1,725,274
0EV TEST & INT (DT&E) 167.4 9.5 17.7 1,857,988

TOTALS 837.2 53.5 9,28,9.18

Total Product!vity - 133.8 (205.0 programmers only) lec/mm
Environmental Modifier - 0.940 with a NM schedule
Total Direct Labor Hours - 127,259

EMBEDDED Software Development Mode
* - Items are included in Total 'roductivity calculation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY S/W RQMTS ENG PRELIM DSGN PROGR. I & T
(SRR) (PDR) (CDR & TRR) (FQT)

RQMTS ANALYSIS 33.01 13.75 9.15 3.211
PRODUCT DESIGN 10.05 57. ,7 18.30 6.22
PROGRAMMING 4.31 16.51 167.75 62.19
TEST PLANNING 2. 87 8.25 18.30 6.22
VERIFY & VALIDATE 5.74 11.00 30.50 38.87
PROJECT OFFICE 8.61 15.13 21.35 12.44
CM/QA 2.87 4.13 21.35 13.99
MANUALS 4.31 11.00 18.30 12.44

NOTES: 1.0 MM - 152 HOURS
THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGN
AND SOFTWARE CODE & DEBUG.

112

-. -..-~...

REVIC MODEI, RESULTS FOR

-3 SIGMA NOMINAL +3 SIGMA
KDSI 80.0 80.0 80.0
KkNMONTHS 837.2 837.2 837.2
SCHEDULE 53.5 53.5 5" .5
TOTAL HOURS 127,259 127,259 127,259
TOTAL COSTS C 9,289,938 9,2U9,938 $ 9,289,938

STANDARD DEVIATION - 0.000 KDSI

Enviroriwnntal Factors for 08-03-1993 02:59:38
ENVIRONMENTAL FACTOR RATING VALUE ENVIRONMENTAL FACTOR RATING VALUE
Analyst Capability NM 1.00 Product Reliability i11 1.15
Programmer Capability HI u.86 Data Base Size NM 1.00
Applications Experiencs NM 1.00 Product Comploxity NM 1.00
Virtual Machine Experience NM 1.00 Required Reuse NM 1.00
Prog. Languaye Experienco HI 0.95 Modern Programming Practicer NM 1.00
Execution Time Constraint NM 1.00 Use Of S/W Tools NM 1.00
Main Storage Constraint NM 1.Q0 Required Security UN 1.00
Virt. Machine Volatility NM 1.00 Mgmt Reserve For Risk VL 1.00
Computer Turnaround Time NM 1.00 Required Schedule NM 1.00
Requirements Volatility NM 1.00 Software Development Mode EB i.00
The environmental modifier is 0.940
Equivalent SEER Ctb - 6,383 Cte - 5,843
Ve sion 9.1 - 23 November 1991

ii ii :

[2 ,-i I if1 ,l , i- r *r~a

REVIC MODEL RESULTS FOR 08-03-1993 02:59:43
CDRL INITIAL PAGF ESTIMATES FOR DOD-STD-2167A/2168

SD0, SRS, STD, AND STR PAGES - 1071 *a.
IRS PAGES - 543
SOP PAGES - 250
SOD (PRELIMINARY) PAGES - 2666
SOD PAGES (FINAL, WITHOUT LISTINGS) - 600J
STP, CSOM PAGES - 210 ca,
IDf PAGES - 1076
SP;, SPM PAGES - 110 ea.
SUM, CRISD PAGES - 105 ;a.
FSM PAGES - 83
VD') PAGES APPROXIMATELY 1G PER FORMAL MEDIA RELEASE.

S/W DEVELOPMENT FOLDER PAGES NOT INCLUDED HERE.

Page counts are appi.)ximate for each document. See DOD-STD-2167A for
an explanation of Lhe acronyms and a dearription of their -ontent.

I NDLX# PNAME LE MP HE
"1. 80000 60000 80000

INDEX # NAME ADSI DM Cm IM

114

.. ,. ' * -

REVIC MODEL PHASE DISTRIBUTION 05-03-1993 03:01:36

LOC to be developed is 45.0 KDSI (152 HRS/MM, $ 73.00 /HR)

PHASE & END REVIEW EFFORT SCHEDULE FSP COSTS
(m-) (months) (people)

S/W RQMTS ENG (SRR) 33.7 8.0 4.2 374,307
PRELIM. DESIGN (PDR)] 64.7 10.4 6.2 717,421
CRITICAL DESIGN (CDR)* 51.5 6.6 12.3 904,574
CODE & DEBUG (TRR)* 61.8 4.0 15.5 686,22
INTEGRATE & TEST (FQT)* 73.1 5.6 13.1 81,9'"
DEV TEST & INT (DT&E) 61.8 7.1 8.3 686,229

TCTAL5 3'7.7 42.0 4,179,757

Total Productivity - 160.1 (245.3 programmers only) loc/mm
Envlronmantal Modifier - 1.150 with a NM schad'ile
Total Direct Labor Hour3 - 57,257
ADA Software Development MHde

- Items are included i.t Total Productivity ualculation

REVIC MODEL ACTIVITY DISTRIBUTION

ACTIVITY S/W RQMTS ENG PRELIM DSGN PROGR. I & T
(SRR) (Poll) (CDR & TRR) (FQT)

RQMTS ANAJYSIS 15.52 6.47 4.30 1. 4
PRODUCT DESIGN 4.72 27.16 8.ho 2.92
PROGRAMMING 2.02 7.76 78.85 29.24
TEST PLANNING 1.35 3.88 8.60 2.52

VERIFY 4 VALIDATE 2.70 5.17 14.34 18.27
PROJECT OFFICE 4.05 7.11 10.04 5.85
CM/QA 1.35 1.94 10.04 6.58
MANUALS 2.02 5.1.7 8.60 5.85

NOTES: 1.0 MM - 152 HOURS

THE PROGRAMMING PHASE INCLUDES BOTH CRITICAL DESIGN
AND SOFPTWARE CODE & DEBUG.

115

REVIC MOOEL RESULTS FOR

-3 SIGMA NOMINAL +3 SIGMA
KDS1 45.0 45.0 45.0
MA11MONTHS 376.7 376.7 376.7
SCHII'DULE 42.0 42.0 42.0
TOTAL HOURfS 57,257 57,257 57,257
TOTAL Cr.STS $ 4,179,756 4,179,756 • 4,179,756

STANDARD DEVIATION - 0.000 KDG.M

Environmental Factors 'or (.}-03-1993 03;01,50
ENVIRONMETrAI., FACTOR RATING VALUE ENVIRONMENTAL FACTOR RATING VALUEW
Analyst Capat•ility NM 1.00 Product Reliability HI 1.15
Programmer Capability NM 1.00 Data be&* Size NM 1.00
Applicatione Experience NM 1.00 Product Complexity NM 1.00
Virtual Machine Experience NM 1.00 Required Reuse NM 1.0u
Prog. Language Experience NM 1.U0 Modern P'roqramminy Practical NM 1.00
Ex'cution Time Constraint NM 1.00 Use Of S/W Toole NM 1.00
Main storage Cornatraint NM 1.00 Required aeGurity UN 1.00
Virt. MHa'.ino Volatility NM 1.00 Mgmt ReseLve For Risk VL 1.0U
Computer Turnaround Time NM 1.00 Required Schedule NM 1.00
Requiromeaits Volatility NM 1.00 Software Development Mode AXIA 1.00
The environAental modifier It 1.150
Equivalent SEEH Ctb - 5,707 Cte .- 4,963
Version 9.1 - 23 November 1941

I lb
,!..... ':i ' •: 'i: ':': ::: ': : ": i -' -• ' i " i" " ' i "i Fi " F i...... .. .i "" ,.......11 6'i ,

REVIC MODEL RESULTS FOR 08-03-1993 03:01:54
CDOL INITIAL PAGE ESTIMATES FOR DOD-STD-2Ib7A/2168

SSUD, SRS, ST['. AND STIR PAGES - to)5 ea.
IRS PAGES - 31 1
SOP PAGES - 162
SOD (PRELIMINARY) PAGES - 1500
SOD PAGES (FINAL, WITHOUT LISTINGS) - 4500
STP, CSCH PAGES 122 ea.
IDD PAGES - bl0
SPS, SPM PAGES - 66 ea.
SUM, CRISD PAGES - 61 *A.
FSM PAGES - 48
VDD PAGES APPROXIMATELY 10 PER FORMAL MEDIA RELEASE.

S/W DEVELOPMENT FOLDER PAGES NOT INCLUUUD HERE.

Paqe counts are approximate Cor each document. So* DOD-STD--2117A for
an explanaziun or the acronyac and a dencription of their content.

rNDEX # NAME LE MP HIE
1 45000 45O00 45000

INDEX 0 NAME ADSI OH CM IM

* I

MODEL. INPUTS AND RESULTS FOR SASET

1 its

****** System E:nvironment Distribution *****

Title Uudget Schedule Value

Class of Software 1.800 1.450 Avionxcs
Hardware System Type 0.950 0.950 Centralized
Pct of Memory Utilized 0.950 0.990 50 s
S/w confiquration Items 1.050 1.050 3
Development Locations 1.000 1.000 1
Customer Locations 1.000 1.000 1
Dev. Workstation Types 1.000 1.000 1
IPrimary Software Language 0.875 1.000 FORT'rANPaucal,Juviai,C
Pct of Micro-Codu 1.000 1.000 0 %
Lifacycia Choice 1.000 1.000 DcD-Std-2167A

Software Budget Multiplier 0.82917
Software Schedule Multiplier 0.98754
Budget Data Factor, 15.000
Schadule Data Factor 12.000
SOURCE FILE: C.\3ASET3O\HASELINE.Fms

3 Auy 1993 2:44i37 AM

)rojuct jI S/W PERCENT DATA
baae mesas TYPE N/N/R STIlT 5LOC

PROJECT: baselinesaes - 0 175000
CSCI: cocil - 0 50000

CSC: CSC2 -- 0 3000o

CSC: CSC1 - 0 20000

CSCI: CSCI2 - 0 80000
CSC: CSCI2 0 80000

CSCI: CSCI3 0 45000
CSC: CSC13 - 0 45000

1 19

Summary of Staff Hours / Starr Months /Hourr per Line Code
based on Conditioned HOL Equivalents by SNtware Type

Cond. HOL Hours
Suetware Type Staff Hours Staff Months Equivalents Per LOC

Systems 0.00 0.0 0 0.00000

Applications 12839d.22 844.7 50000 2.56796
Support 0.00 0.0 0 0.00000

Budget - 128398.22 844.7 50000 2.56796

Data Statements 0.00 0.0 0
Systems Raqtu 20140.90 132.5
Systems Test 19301.69 127.0

Total Budget - 7 ,7440.32 1104.2

"> Hours per LOC is 3.35682 4-

1120

*~**** System Attributes Distribution *****-

System Complexity Title Budget Schedule Complexity

System Requirements 1.000 1.000 Average
Softwarm Requirements 1.000 1.000 Average
Software Documentation I.020 1.010 Coliplex
Travel Requirements 1.000 1.000 Average
Men Interaction 1.020 1.010 Complex
Timing and Criticality 1.000 1.000 Average
Software Testability 1.000 1.000 Average
Hardware Constraints 1.000 1.000 Average
Hardware Experoen, 1.000 .1.000 Average
Software Experience 1.000 1.000 Average
Software Interfaces 1. 000 L.000 Average
Development FaciliLiez 1.000 1.000 Average
Development va Ifost Sys 1.000 1.000 Average
Technology Impacts 1.000 1.000 Average
COTS Software 1.000 1.000 Avoraqe
Development Team 1.000 L.000 Average
Embedded Development Sys 1.000 1.000 Averago
Software Development Tools 1.000 1.000 Average
Parsonnel Remources 1.000 1.000 Average
Programming Language 1.000 1.000 Average

Software Systems iludget Multiplier 1.04040
Software Sys.tnn3 :chadule Multiplieu 1.02010

*h**** System Attributos Distribution *****

Tnteqration Complexity Title Factor Cmplx Product Comple ity

S/W Language Complexity 9.00 2.00 3.8.00 Average
Modularity of Softwarm 5.00 2.00 10.00 Average
S/W Timing & Criticality 5.00 2.00 10.00 Average
Number or CSCI Interfacee 7,00 2.00 14.00 Average
Software Documentation 7.00 3.00 21.00 Complex
Development Facilities 4.00 2.00 8.00 Average
Software Interfaces 6.00 2.00 12.00 Average
Testing Complexity 8.00 2.00 16.00 Average
Development Complexity 7.00 2.00 14.00 Average
Integration Experience 6.00 2.00 12.00 Average
Intag. Develo',ment Tools 6.00 2.00 12.00 Average
Schedule Constrainta 8.00 2.00 16.00 Average

lt;rdgct 1ncm r, - .0 1 Budgot Value - 163.00

121

Summary of Staff Hours / Staff Months / Hours per Line Code
based on Conditioned HOL Equivalents uy Software Type

Cond. HOL Hours
Software Type Staff Hours Staff Months Equivalents Per LOC

Systems 0.00 0.0 0 G.00000

Applicaticna 63410.69 417.2 26667 2.37790
Support 0.00 0.0 0 0.00000

Budget 6- 3410.69 417.2 26667 2.37790

Data Statements 0.00 0.0 0
Systems Reqts 9946.78 65.4
Systems Tust 9532.33 62.7

Total Budget - 82889.79 545.3
4---------------------.
I -> Hours per LOC is 1.10837 <- I
4--------- -------- +

122

I

-I - 122 . . u.... .--

*****h System Attributes Distribution ******

System Complexity Title Budget Schedule Conplexity
System Requirements 1.000 1.000 Average
Software Requirements 1.000 1.000 Average

Software Documentation 1.020 1.010 Complex

Travel Requirements 1.000 1.000 Average
Man Interaction 1.020 1.010 complex
Timing and Criticality 1.000 1.000 Average
Software Testability 1.000 1.000 Average
Hardware Constraints 1.000 1.000 Average
Hardware Experience 1.000 1.000 Average
Software Experience 0.850 0.990 Simple
Software Interfaces 1.000 1.000 Average
Development Facilities 1.000 1.000 Average
Development vs Host Sys 1.000 1.000 Average
Technoloyj Impacts 1.000 1.000 Average
COTS Scitware 1.000 1.000 Average
Development Team 1.000 1.000 Average
Embedded Development Sys 1.000 1.000 Average
Software Development Tools 1.000 1.000 Average
Personnel Resources 1.000 1.000 Average
Programming Language 1.020 1.010 Complex

Software Systems Budget Multiplier G.90203
Suftware Systems Schedule Multiplier 1.02000

****** System Attributes Distribution ****

Integration Complexity Title Factor Cmplx Product Complexity

S/W Language Complexity 9.00 3.00 27.00 Complex
Modularity of Software 5.00 2.00 10.00 Average
S/w Timing & Criticality 5.00 2.00 10.00 Average
Number of CSCI Interfaces 7.00 2.00 14.00 Average
Softwara Documentation 7.00 3.00 21.00 Complex
Development Facilities 4.00 2.00 8.00 Average
Software Interfaces 6.00 2.00 12.00 Average
Testing Complexity 8.00 2.00 16.00 Average
Development Complexity 7.00 2.30 14.00 Average
Integration Experience 6.00 2.00 12.00 Average
Integ. Development Tools 6.00 2.00 12.00 Average
Schedule Constraints 8.00 2.00 16.00 Average

Budget Increase % - 5.0 % Budget Value * 172.00

I£
12.3

.- . . .J

Summary of Staff Hours / Staff Months / Hours per Line Code
based on Conditioned HOL Equivalents by Software Typi

Cond. IIOL Hours
Software Type Staff Hours Staff Months Equivalents Per XL.O

Systems 0.00 0.0 0 0,00000
Applicatfri'ns 115558.40 76A.3 45000 2.56796
Support 0.00 0.0 0 0.00noo

Budget 1 115558.40 76 0 45000 :.i6796

Data Statements 0.00 0.0 n
Systems Reqtr 18126.81 j.19.3
Systems Test 17371.52 114.3

Total Budget " 151054.73 903.8

I -> Hours per LaC is 3.35682 <- j

...--------------..----

p

124

AiR

****** System Attributes Distribution *****

System Complexity Title Budget Schedule Complexity
System Requirements 1.000 1.000 Average
Software Requirements 1.000 1.000 Average

Software Documentation 1.020 1.010 Complex
Travei Requirements 1.000 1.000 Average
Man Interaction 1.020 1.0i0 Complex
Timing and Criticality 1.000 -1.000 Average
Software Testability 1.000 1.000 Avera'a
Hardware Constraints 1.000 1.000 Average
Hardware Experience 1.000 1.000 Average
Software Experience 1.000 1.000 Average
Software Interfaces 1.000 1.000 Average
Development Facilities 1.000 1.000 Average
Development vs Host Sys 1.000 1.000 Average
Technology Impacts 1.000 1.000 Average
COTS Software 1.000 1.000 Average
De-elopment Team 1.000 1.000 Average
Embeaded Develapment Sys 1.000 1.000 Average
Software Development Tools 1.000 1.000 Average
Personnel Resources 1.000 1.000 Average
Programming Language 1.000 1.000 Average

Software Systems Budget Multiplier 1.04040

Software Systems Schedule Multiplier 1.02010

****** System Attributes Distribution ******

Integration Complexity Title Factor Cmplx Product Complexity

S/W Language Complexity 9.00 2.00 1i.00 Average
Modularity of Softwavt 5.00 2,00 10.00 Average
S/W Timing & Criticality 5.00 2.00 10.00 Average
Number of CSCI Interfaces 7.00 2.00 14.00 Average
Software Documentation 7.00 3.00 21.00 Complex
Development Facilities 4.00 2.00 8.00 Average
Software Interfaces 6.00 2.00 Ii.00 Average
Testing Complexity 8.00 2.00 16.00 Average
Development Complexity 7.00 2.00 14.00 Average
Integration Experience 6.00 2.00 12.00 Average
Integ. Development Tools 6.00 2.00 12.00 Average
Schedule Constraints 8.00 2.00 16.00 Average

Budget Increase % a 5.0 % Budget Value - 163.00

2.25

ii i i.| --.

A

"MODEL INPUTS AND RESULTS FOR PRICE-S

1 2ii

--- PRICE SOFTWARE MODEL.
Acquisition Mode

DATE Sat 7/31/93 TIME 3/59 PM Project Projecti
392148

CSCI 1 Devt. Item w/comps

ITEM DESCRIPTORS
Platform 1.80 Mgmt Complexity 1.0O External Integ 0.50

ITEM SCHEDULE
System Concept Date 0 System Requirements Review 0
System Design Review 0 Software Spec. Review 894
Pro. Design Review 0 Critical Design Review 0Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qua] Review 0
Oper Test & Evaluation 0

COMPONENT 1 titled: CSC £

DESCRIPTORS
Internal Into; 0.50 External Integ 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec. Review 394 Pro. Deoign Review 0Critical Design Review o Test ReadJ.ness Review
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
mlanguage Ad Source Code 30000 Non-executable SLOC 0.00

Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.00
Application 5.50 New Design 1.00 New C,.e 1.00

Application Categories Mix New Design New Code
User Defined (APL - 5.50) 0.00 0.00 0.00
DATA SIR 0.00 1.00 1.00Online Comm 0.00 1.00) 1.00
Realtime C&C 0.00 0.00 0.00Interactive 0.00 1.00 1.00
Mathematical 0.00 1.00 1.00
String Manip 0.00 1.00 1.00
Operating Systems 0.00 1.00 1.00

COMPONENT 2 titled: CSC 2

DESCRIPTORS
Internal integ 0.50 External Integ 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec. Review 894 Pro. Design Review 0
Critical D.uigi Review U Test Readiness Review0
Functional Confiq Audit 0

LANGUAGE 1 DESCRIPTORS
Language Ada Source Code 20000 Non-executable SLOC 0.00
Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.00
Application 5.50 New Design .. 00 New Code 1.00

Application Categories Mix New Design New Code

127

PRICE SOFTWARE MODEL ---
Acquisition Mods

DATE Sat 7/31/93 TIME 3/59 PM Project Projectl
392148

CSCI 1 Devt. Item w/comps

Costs in Person Months

Design Pyming Data S/PM Q/A Config TOTAL

Sys Concept 27.0 0.0 4.7 12.6 1.2 1.2 46.5
Sys/SW Reqt 33.7 0.0 5.8 15.7 1.5 1.5 58.1
SW Requirement 41.7 0.0 13.9 52.7 6.9 6.9 122.1
Prelim Design 76.5 24.7 21.6 50.9 11.1 11.1 196..0

Detail Design 114.7 37.1 32.5 76.3 16.7 16.7 294 0
Code/Taet 37.4 136.7 23.3 28.5 30.5 30. 287.0
CSCI Test 70.0 48.5 35.1 38.1 38.3 38.3 268.1
System 'rest 2.10 6.3 4.2 12.6 13.7 27.3 105.1
Oper TE 13.1 7.8 5.2 7.8 8.9 9.4 52.3

TOTAL 434.9 281.2 146.3 295.2 128.8 142.9 1429.5

SCHEDULE INFORMATION

Concept Ltart ear 93* TRR Sep 96A (11.41
SRR .ul 93* (4.9) YCA Apr 97* (7.0Cj
SD, Nov 93* C 3.2) PCA Jun 9/* (2.0)
SSR Aug 94 (9.51 FQR Aug 97* C 2.0)
PDR Feb 95* 6.4) OTE Jan 93* (5.1)
CDR Oct 95* (7.2)

SUPPLEMENTAL INFORMATION

Soutcs Lin. of Code 50000
Source Lint of Code/ Persun Months 47.83

J.21

UA .•J.h. ' - *, * - - . " _ .. .,

--- PRICE SOFT'WARE MODEL
Acquisition Mode

DATE Sat 7/31/95 TIME 4/02 PM Project : Project!
392140

CSCI I Devt. Item w/comps

Costs in Person Months

SENSITIVITY DATA

(PROFAC - COMPLEXITY)

COMPLEXITY CHANGE

- 0.50O.U + 0.50

COST 1012.6 : COST 1585.7 : COST 21171.0
P - 0.50 :
R : MONTHS 27.1 : MONTHS 59.4 : MONTHS 94.7
0
F :------------------- --A : :
A ::,..
C COST 909.4 : COST 1429.5.: COST 1961.7

0.00 : .

C : MONTHS 26.7 :. MONTHS 58.7.: MONTHS 93.5
If : :
A :--u-mmmmmm

N
G : COST 825.2 : COST 1300.9 : COST 1783.7
E + 0.50

MONTHS 26.4 : MONTHS 58.0U MONTHS 92. 3

-----------....---------- : - ----------

12-9

.PtICE SOFTWARE MODEL ---
Acquinxtion Mode

DATE Sat 7/Ji/93 rIME 4/06 PM ProjeCL Projecti
392143

CSCI I D§vt. [ca-. w/•o.ups

Costs in Persont M,,atha

SENSITIVITY DATA
(APPLICATION - SIZE)

SIZE CILANGE

- 1.o.01 0.0 t 10.3%

..

* COST 1251.8 : COST 1404.0 CGUT 1557.6

A - 0.10
P . MONTHS 53.0 MONTHS 58.2 : MONT1l- (J0. .1

pL - : -
L -- - - - - - - - - -- - -- - -- - -- - -- - --........... . . 1 u 1 . 1 .:.

: : ,~.

C : COST 1274.4 : COST 1429.5.: COST 1585.9
i 0.0O : .:

A MONTHS 56.4 :. MONTHS 58.7. : MONTHS bo.8

N ,.. :

G ----------------~~~--- ------...... --- -----------

E
: COST 1297.1 : COST 1454.9 : COST 1614.2

S0.10
MONTHS 56.9 : MONTh1S 59.1i M ONTHS 61.3

- - - N ------- ----------- --------- . .

130

P'RICE SOFTWAR1E MODEL - --
Acquieition Mode

DATE Sat 7/11/93 TIME 4/06 PM Project 1'ruojc~tl
392148

CSCI 2 Developmnent Item

ITkA DESCRIPT"OR&S
Platfor-m 1.8(1 Mqmt complexity 1.00 Cost 0.00
Internal Inteaj 0.50 External Inte.g 0.50 Utili zatimn 0.50

ITEM1 SCHEDUILE
System COnceapt Date 0 SYSLG~IQ 1eqoiLOM011t-.5 leViUW 0
Syvtoan Oeaiajn Review 0 Softare SpQei. Review 119 4
Pro. Design Review 0 Cl~ti~.l !)smiqri Review 0
Tent Readiness Review 0 FUnctiU'id1 C'11fiij Audit 0
PhYsic'A1 Cunfig Audikt. 0 IFulut.;unaJ. Qual1 Review 0
Oper Trent & Evaluation& U

r,an, uwq Assembily Suuritm code 30IO00 Non -qixicut~l':e. SLUC 0.00
Conmplexity 1 0.&io cumplaxity a 1 .00 Productivity tPiituL 5.00
Applic2ati'jn 5.50 New. Ooui~yn 1.00 New Ciodu 1. 0)

Applical.,ion Catoequrjes Mix Nuw Usulyin Raw Code
Ugfr Defined (APPI' 6.42) 11.00 0.00 0 -00)
IJATA S/ 0.00 0.00O 0.00U
onlino Comm 0. k) 0.o0 0.00
Healt~ilf. C&C 0.00 0,100 0 .00
InteractLive 0.00 0.02 (Q.00
MathumatiQn1 0.00j 0.00 0).G0
Strin Manip 0.00 ().00 0.00
oparat..ny Systems 0.00 0.00 0.001

-PRICE SOV7NARE MODEL
Acquisition Mode

DATE 5at 7/31/'13 TIME 4/06 PM Project : rujectl
392148

CSCI 2 Develoipment Item

Costs in Person Monthn

Design Pgmifl9 Data S/PM Q/A Config TOTAL

Sys noaept 10.3 0.0 1.8 4.8 0.4 0.4 17.8
Sys/SW Reqt 12.9 0.0 2.2 6.0 0.6 0.6 22.2
SW Requirement 16.8 0.0 4.6 21.0 2.4 2.4 47.4
Prelim Design 25.7 9.3 6.6 16.9 3.3 3.3 65.0
Detail DutLqn 31).b 13.9 9.9 25.3 4.9 4.9 97.5
Coda/Test W0.1 48.4 6.7 8.4 8.9 8.9 91.4
CSCI Teat 32.1 21.4 •5.5 17.9 16.1 16.1 110.8
System Test 8.0 10.0 1.6 4.8l 5.2 10.4 40.1
Oper TE 5.0 3.0 2.0 3.0 3.4 3.h 20.,0

TOTAL 159.4 105. 9 51 1 108.0 45.2 50. f, 52o.2

rCtIEDULF ENFOaRMATIoN

Concept Start Nov 93* TMR Sep 95* (6.0)
SHA Deot 9JO 2.9) FCA Feb 98* (4.5)
SDR Feb 94* 1.9) PCA Mar 96* (1.4)
SS Aug 94 (5.6) FQR Apt 96* 1 1.4)
P011 Nov 94* (3.4) OTE Aug 96* (3.4)
CDOR Mar 95* (3.7)

SUPPLENIENTAL INFOHMATION

Source Lines of Code O0000
5ource Lines of Code/ Person Mor,ths 214.64

132

--- PRICE SOFTWARE MODEL ---
Acquisition Mode

DATE Sat 7/31/93 TIME 4/07 PM Project ProjcLtl
392148

CSCI 2 Development Item

Coats in Person Months

SENSITIVITY DATA
(FROFAC - COMPLEXITY)

COMPLEXITY CHANGE

- 0.50 0.0 + 0.50

* COST 308.7 COST 175.2 : COST 841.4

P - 0.50 :
R MONTHS 11.3 : MONTHS 34.5 : MONTH5 bo.5

A :.....
C COST 277.9 :. COST 520.2.: COST 760.5

0.00 :
C : MONTHS 11.2 :. MONTHS 34.1.: MONTHS 59.7
14 -":...... I.... ,...... ...
14 : :-A---.---- ---

N
G COST 252.3 : COST 474.4 : COST 697.4

E + 0.50 :
MONTHS 11.0 : MONTHS 33.7 : MONTHS 59.0

------- -- - --- .---------...... - a- --------ssssssss

133

PRI E SOFTWARE MODEL ---
Acquisitioii Mode

DATE Sat 7/31/93 TIME 4/08 PM Project : Projectl
392144

CSCI I Development Item

Costs in Person Months

SENSITIVITY DATA
(APPLICATION - SIZE)

SIZE CHANGE

- 10.0% 0.0 4. 10.0%

* COST 455.8 COST 511.3 : COST 567.3
A - 0.10
P MONTHS 32.5 : MONTHS 33., : MONTHS 35.0
P

: • ~~......... 0......
C COST 463.7 ;. COT 520.2.: COST 577.2
H 0.00 :
A MONTHS 32.8 :. MONTHS 34.1.: MONTHS 35.3
N

Cwwwwwwwwwwwwwwwwwww :- a ww

E
* COST 471.6 COST 529.1 COST 587.1

+ 0.10
MONTHS 33.0 : MONTHS 34.4 : MONTHS 35.6

1.

134

/I i'i• i'mI md mP• i'i..i. i• mini --'i -*i.m i-

PRICE SOFTWARE MODEL
Acquisition Mods

DATE Sat 7/31/93 TIME 4/08 PM Project Projectl
392148

CSCI 3 Developi-ient Item

ITEM DESCRIPTORS
Platforn 1.80 Mgmt Complexity 1.00 Cost 0.00
Internal Integ 0.50 External Intag 0.50 Utilization 0.50

ITEM SCHEDULE

System Concept Date 0 System Requirements Review 0
System Design Review 0 Software Spec. Review 894
Pro. Design Review 0 Critical Design Review 0
Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qual Review 0
Oper Test & Evaluation 0

LANGUAGE 1 DESCRIPTORS
Language Ada Source Code 45000 Non-oxecutable SLOC 0.00
Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.00
Application 5.50 New Desigqn 1.00 New Code 1.00

Application Categories Mix New Design Now Code
User Defined (APPL - 5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
String Manip 0.00 0.00 0.00
Operating Systems O.O0 0.00 0.00

135

itw

--- PRICE SOFTWARE MODEL
Acquisition Mode

DATE Sat 7/31/93 TIME 4/08 PM Project Projectl
392148

CSCI 3
Development Item

Costs in Person Months

Design Pgaing Data S/PM Q/A Config TOTAL
Sys Concept 24.5 0.0 4.2 11.4 i.1 1.1 42.3Sys/sw Reqt 30.6 0.0 5.3 14.3 L.3 1.3 52-8SW Requirement 37.3 0.0 12.3 47.1 6.1 6.1 108.9Prelim Design 63.1 20.5 19.1 42.9 9.8 9.8 165.1Detail Design 94,7 30.8 28.6 64.4 14.7 14.7 247.7Codn/Test 22.1 102.0 £5.8 19.1 21.5 21.5 201.9CSCI Test 63.3 44.0 34.1 35.6 36.6 36.6 250.1System Test 19.1 23.9 3.8 11.5 12.4 24.8 95.5Oper TE 11.9 7.1 4.8 7.1 8.1 8.6 47.5

TOTAL 366.6 228.2 127.9 253.3 111.4 124.3 1211.8

SCHEDULE INFORMATION
Concept Start Apr 93* TRR Jun 96* (9.2)

SRR Aug 931 (4.7) FCA Jan 97* (6.7)
SUR NOV 93* (3.1) PCh Mar 97* (2.0)
SSR Aug 94 (9.1) FQR May 97* 2.0)POR Feb 95* (6.2) OTE Oct 97* (4.9)
CDR $ep 95* (6.9)

SUPPLEMENTAL INFORMATION

Source Lines of t2ode 45000
Source Lines of COde/ Person Months 52.03

13

136

--- PRICE SOFTWARE MODEL ..

Acquisition Mode

DATE Sat 7/31/93 TIME 4/09 PM Project : Projfctl

CSCI 3392143 Development Item

Costs in Parrott Montha

SENSITIVITY DATA
(PROFAC - CO"_LEXITY)

COMPLEXITY CHANGE

- 0.50 0.0 + 0.50

. COST 819.1 COST 1343.2 COST 1878.9
P -0.50 :
R : MONTHS 25.0 MONTHS 55.4 : MONTHS 88.8
0
F :--ns------ -------•------:-n--nn-u- -m-:---m--------

A :
C : COST 736.4 :. COST 1211.8.: COST 169a.9

0.00 :
C : MONTHS 24.6 :. MONTHS 54.7.: MONTHS 87.7
H : :
A : -- ------ -- - : - ----------- ---
N
G : COST 668.5 ± COST 1103.4 : COST 1549.7
E + 0.50

* MONTHS 24.3 MONTHS 54.1 : MONTHS 86.7

* -s : ~m= ,. snm - -m - -m1:3m

137

--- IkRICE SOFTWARE MODEL,
ýc.qxuisition Mode

,ATE 54t 7/31/93 TI!40 4/1.1 PM Pruject :roJm.tl
29214.

CSCI 3 Dr",c4ptnt ,':tu

SENSITIVITY DATA
(APPLICATION - SIZZ)

SIZE CHANG&+

•-10.0% 0.0 + 10.0%

COST i4060.5 CCST 1190.1 COST 0:20.9
A -0.0.:
P MONTHS 52.2 : MONTHS 4.3 MONTHS 5t,. :

L . .a0 .. - .- , m'r :m ma n mn

c COS.Er 107 9.9 :. COST 1211.0. : COST i3.45. .0
H 0.00
A MONTHS 52.6 :. e-ONTHS 54.7. • MO14?HS 56.7
N

-: -- : :-- - -

COST 1099.2 : COST 1233.6 : COST 1369.2
+ 0.10

MONTHS 51.0 MONTHS 55.1 MONTHS 57. 1

.I3•

133

MODEL INPUTS AND RESULTS FOR SEER-SEM

139

S:ER-SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project Test Case 7/31/93
PROJECT Test Case 4:20:22 PM

Quick Estimate

2ffort Months 2,366.37
Bass Year Cost 33,602.42K
Phases 1Included REQ + FSI + STE

6

I!

USAF F49650-92-C004 GOV"T USE ONLY: IYSAF EMPLOYEE USE ONLY
License expires: 3/31/1994 9

Copyright(C) 1988-93 Galorath Assoziatuo, Inc. All Rights Reserved. Page

140

SZER-SEM (Vi) Software Schedule, Cost S Risk Estimation Version 3.21
Project Test Case 7/31/93
PROJECT Test Case 4:20:22 PM

Activity

Schadule Person Person
Activity Months Months Hours Cost

System Concept 0.00 0.00 0 0
Cumulative 0.00 0.00 00

Systes Requirements Design 0.00 33.60 5,107 477,058
Cumulative 0.00 33.60 5,107 477,058

S/W Requirements Analysis 0.00 98.59 14,986 1,400,019
Cumulative 0.00 132.19 20,093 1,877,078

Preliminary Design 0.00 203.43 30,921 2,888,640
Cumulative 0.00 335.61 51,013 4,765,717

Detailed Design 0.00 341.19 51,861 4,844,924
Cumulative 0.00 67G.81 102,874 9,610,641

Code & CSU Test 0.00 534.22 81,201 7,585,881
Cumulative 0.00 1,211.02 184,075 17,196,522

CSC Integrate & Test 0.00 637.83 96,951 9,057,733
Cumulative 0.00 1,848.86 281,026 26,253,756

CSCI Test 0.00 73.34 11,148 1,041,475
Cumulative 0.00 1,922.20 292,174 27,295,230

System Integrate Thtu OT&E 0.00 444.17 67,514 6,307,189
Cumulative 0.00 2,366.37 359,688 33,602,419

Maintenance / Op Support 0.00 0.00 0 0
Cumulative 0.00 2,366.37 359,688 33,602,419

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyri.ght(C) 1998-93 Galorath Associates, Inc. All Rights Reserved. Page 2

141
l&]I

S:ER-SEM (TM) Software Schedule, Cost & Risk: Estimation Version 3.21
Project Text Case 7/31/93
CSCT :CSCI 1 4:20:38 PM

Quick Estimate

Schedule Months 41.29
Effort Months 719.41
Base Year Cost 10,215.59K
Constraint MIN TIMZ
Phases Included REQ + FSI + STE

USAF F49650-92-C0004 'OV'T USE ONLY: USAF EMPLOYEE USE ONLY
Lici.nae expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page I

.142

SEER-SEM (TM) Software Schedule, Cost & Risk Eatimation Version 3.21
Project : Teat Case 7/31/93
C.SCI : CSCI 1 4:20:38 PM

Inputs

Least Likely Most

+ EFFECTIVE LINES 50,000 50,000 50,000
- New Lines of Code 50,000 50,000 50,000
+ PRE-EXISTS, NOT DESIGNED FOR REUSE 0 0 0

- Pro-existing lines of code 0 0 0
- Lines to be deleted in pre-sxstg 0 0 0
- Redesign required 0.00% 0.00% 0.00%
- Reimplemantation required 0.00% 0.00% 0.00%
- Retest iiquirsd 0.00% 0.00% 0.00%

+ PRE-EXISTs, DESIGNED FOR REUSE 0 0 0
- COMPLEXITY Viii- VHi Vii+
+ PERSONNEL CAPABILITIES & EXPERIFNCE Low- Nom Hi-

- Analyst Capabilities Lou Nom Hi
- Analyst's Application Experience Nom- Nom Nom+
- Programmer Capabilities Low Ncm Hi
- Programmer's Language Experience Low- hom Hi
- Host Development System Experience Low- Nom Hi
- Target System Experience Low- Nom Hi
- Practices & Methods Experience Low- Nom Hi

J DFVELOPMENT SUPPORT ENVIRONMENT Low+ mom mom
- Modern Development Practices Use Nom- oNom Nom+
- Automated Tools Use Low Nom Nom
- Logon thru Hardcopy Turnaround VLo Low+ Hi
- Terminal Response Time Low- Hi- Hi
- Multiple Site Development Nom Nom Nom
- Resource Dedication Nom Nom Nom
- Resource and Support Location Norn Nom Nola
- 1o0t System Volatility Nom Nom Nom
- Practices & Methods Volatility Non Hom Nom

+ PROUUCT DEVELOPMENT REQUIREMENTS Nom Nom Hi
- Requirements Volatility (Change) Nom Non Hi
- Specification Level - Reliability Nom Now Hi
- Test Level Nom Nom Hi
- Quality Assurance Level Nom Nom Hi
- Rehost from Development to Target Nom Hi VHi+

+ PRODUCT REUSABILITY REQUIREMENTS
- Reusability Level Required Nom NoMa Non
- Software Impacted by Reuse 0.00% 0.00% 0.00%

+ DEVELOPMENT ENVIRONMENT COMPLEXITY mom- Nom Nom+
- Language Type (complexity) Nom Nor VHi
- Host Develop. System Complexity Nrm Nom Nos
- Application Class Complexity Nom- Nom Nom+
- Practices & Procedures Complexity NMm Nom mom

+ TARGET ENVIRONMENT No,' Nom+ Hi-
- Special Display Requirements Hi- Hi VRi
- Memory Conztrainta Hi- Hi Hi+
- Time Constraints Nom Nom+ Hi-
- Real Time Code Nom Nowm Hi
- Target System Complexity Nom mom Non
- Target Systum Volatility Hi- Hi Hi+
- Security Requirements Nom Nom Nom

+ SCHEDULE

USAF F49650-92-C0004 GOV'T USE ONLY: USAF ELPLOYEE USE ONLY
License expires: 3/31/1994

Copyrigh:(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 2

143

SEER-SEK (TM) Software Schedule, Cost A Risk Estimation Version 3.21
Project Test Case 7/31/93
CSCI CSCI 1 4:20:38 PM

Inputs

Least Likely Most

- Required Schedule (Calendar Moo) 0.00
- Start Date for Requirements Phase 7/31/93
- Base Monetary Year 1991

+ STAFFING
- Maximum Staffinq Rate Per Year 0.0
- Maximum Total Staff Available 0.0
- Maximum Effort Available (P~os) 0.00
- Forced Overstaffing Nom

- Probability 50.00%
+ S/W REQUIREMENTS ANALYSIS

- Requirements Complete 9 Contract Low
- Requirements Definition Formality Nom Nom Hi
- Requirements Effort After Baseline YES

+ S/W TO 5/W INTEGRATION
- CSCIm Concurrently Integrating 2
- Integration Organizations Involved 0
- External Interfaces Among CSCIS 0

4. S/W TO H/W INTEGRATION
- Hardwaze Integration Level Nom Nom Nom
- Unique Hardware Interfaces 0

+ OTHER ADD-ONS
+ SOFTWARE MAINTENANCE

- Years of Maintenance 0
- Separate Sites 1
- Maintenance Growth over Life 23.00%
- Personnel Differences Low Nom- Nom
- Development Environment Differences Nom Wom Nom+
- Annual Change Rate 11.00%
- Maintain Total System YES

+ ESTIMATE TO COMPLETE
+ AVERAGE PERSONNEL COSTS 14,200

J
USAF F49650-92-C0004 GOV'T USE ONLY: USAF IMPLOYEE USE ONLY

License expires: 3/31/1994
Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 3

144

SEER-SEH (TM) Software Schedule, Cost & Risk Estimation Version 3.21
ProJect Test Case 7/31/93
CCI CSCI 1 4:20:38 PM

Activity

Schedule Person Person
Activity Months Months Hours Coat

--.---- - - ----- --.... ---- -- ---------.... .. --.-- .--- . -- . -----. . - ------

System Concept 0.00 0.00 0 0
Cumulative 0.00 0.00 0 0

System Requirements Design 3.72 10.21 1,552 145,032
Cumulative 11/21/93 3.72 10.21 1,552 145,032

S/w Requirements Analysis 4.38 29.97 4,556 425,625
Cumulative 4/02/94 8.10 40.19 6,108 570,657

Preliminary Design 5.61 61.84 9,400 878,185
Cumulativ4 9/21/94 13.71 102.03 15,509 1,448,842

Detailed Design 6.45 103.73 15,766 1,472,922
Cumulative 4/04/95 20.16 205.76 31,275 2,921,764

Code & CSU Test 7.57 162.41 24,686 2,306,210
Cumulative 11/21/95 27.73 368.17 55,961 5,227,974

CSC Integrate & Test 7.57 193.91 29,474 2,753,521
Cumulative 7/10/96 35.10 562.08 85,436 7,981,495

CSCI Test 0.84 22.30 3,389 316,622
Cumulative 8/04/96 36.14 584.37 88,825 8,298,117

System Integrate Thru OT&E 5.15 135.03 20,525 1,917,470
Cumulative 1/08/97 41.29 '19.41 109,350 10,215,588

Maintenance / Op Support 0.00 0.00 0 0
Cumulative 1/08/97 41.29 719.41 109,350 10,215,588

USAF F49650-92-C0004 GOV'T USE ONLY: USAF LAPLOYEE USE ONLY
License expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 4

1A5

S...... r T - - - --..........T---- -- , , , ,-,' ' '

SEER-SEM IT1) Software Schedule, Cost & Risk Estimation Version 3.21
Project Test Case 7/31/93
CSCI : CSCI 2 4:20:51 PM

Quick Estimate

Schadule Months 46.28
'1 Effort Months 1,012.99

Base Year Cost 14,384.51K
Constraint MIN TIME
"Phases Included REQ -. FSI + STE

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyrigh (C) 1988-.i3 Ga.o.rath Associates, Inc. All Rights Reserved. Page .

j i i6

SEER-SEM (TM) Software Schedule, Cobt I Risk Estimation version 3.21
Project : Test Case 7/31/93
CSCT : CSCI 2 4:20:51 PM

Inputs

Least Likely Most

+ EFFECTIVE LINES 80,000 80,000 80,000

- New Lines of Code 80,000 80,000 80,000
+ PRE-EXISTS, NOT DESIGNED FOR REUSE 0 0 0

- Pre-existing lines of code 0 0 0
- Lines to be deleted in pre-axstg 0 0 0
- Redesign required 5.00% 10.00% 40.00%
- Reimplementation required 1.00% 5.00% 20.001
- Retest required 10.00% 40.00% 100.00%

+ PRE-EXISTS, DESIGNED FOR REUSE 0 0 0
* COMPLEXITY VHi- %Hi vHi+
+ PERSONNEL CAPABILITIES & EXPERIENCE Nom- Hi- Hi+

- Analyst Capabilities Low Nom Hi
- Analyst's Application Experience Nom- Nom Nom+
- Programmer Capabilities Nom Hi V~i
- Programmer's tanguage Experience Hi Vii EHi
- Host Development System Experience Nom Hi VHi
- Target System Experience Nom Hi Hi
- Practices & Methods Experience Nom Hi VHi

+ DEVELOPMENT SUPPORT ENVIRONMENT Low+ Nom Nom0
- Modern Development Practices Use Nom- Nom Nom+
- Automated Tools Use Low Nom Nom
- Logan thru Hardcopy Turnaround VLo Lowi- Hi
- Terminal Response Time Low- Hi- Hi
- Multiple Site Development Nom Nom Nom
- Resource Dedication Now Nom Nom
- Resource and Support Location Now Nom Nom
- Host System Volatility Non Nom Nom
- Practices & Methods Volatility Non No= Nom

+ PRODUCT DEVELOPMENT REQUIREMENTS Non Nom Hi
- Requirements Volatility (Change) Nom Nom Hi
- Specification Level - Reliability Nom Nom Hi
- Test Level Nom Nom Hi
- Quality Assurance Level Now Nom Hi
- Rehost from Development to Target Nom Hi VHi+

+ PRODUCT REUSA9ILITY REQUIREMENTS
- Reusability Level Required Now Nom Nom
- Software Impacted by Reuse 0.00% 0.00% 0.00%

+ DEVELOPMENT ENVIRONMENT COMPLEXITY No. Nom Nom+
- Language Type (complexity) Hi Hi Vhi
- Host Develop. System Complexity Nom Nom Nom
- Application Class Complexity Non- Nom Nom-.-
- Practices & Procedures Complexity Nom Nom Nom

+ TARGET ENVIRONMENT Non Nowm Hi-
- Special Display Requirements Hi- Hi VHi
- Memory Constraints Hi- Hi Hi+
- Tima Constraints Nom Nom+ Hi-
- Real Time Code Nom Nom- Hi
- Target System Complexity Nom Nom Nom
- Target System Volatility Hi- Hi Hi+
- Security Requirements Nom Nom Nom

+ SCHEDULE

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 2

147

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project : Test Case 7/31/93
CSCI : CSCI 2 4:20:51 PM

Inputs

Least Likely Most

- Required Schedule (Calendar Hos) 0.00
- Start Date for Requirements Phase 7/31/93
- Base Monetary Year 1993

+ STAFFING
- Maximum Staffing Rate Per Year 0.0
- Maximum Total Staff Available 0.0
- Maximum Effort Available (PMos) 0.00
- Forced Overstaffing No=

- Probability 50.00%
+ S/W REQUIREMENTS ANALYSIS

- Requirements Complete @ Contract Low
- Requirements Definition Formality Mom Nom Hi
- Requirements Effort After Baseline YES

+ S/W TO S/W INTEGRATION
- CSCIs Concurrently Integrating 2
- Integration Organizations Involved 0
- External Interfaces Among CSCIs 0

+ S/W TO H/W INTEGRATION
- Hardware Integration Level Nom Nom Nom
- Unique Hardware Interfaces 0

+ OTHER ADD-ONS
+ SOFTWARE MAINTENANCE

- Years of Maintenance 0
- Separate Sites 1
- Maintenance Growth Over Life 23.00%
- Personnel Differences Low Nom- Nom
- Development Environment Differences Nom Nom Nom+
- Annual Change Rate 11.00%
- Maintain Total System YES

+ ESTIMATE TO COMPLETE
+ AVERAGE PERSONNEL COSTS 14,200

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 3

148

SEER-SEX (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project : Test Case 7/31/93
CSCI : CSCI 2 4:20:51 PM

Activity

Schedule Person Person
Activity Months Months Hours Cost

-- - -- - - - - - - - - - ---.--.--.-- --....-----. ------ ------ ------.......

System Concept 0.00 0.00 0 0
Cumulative 0.00 0.00 0 0

System Requirements Design 4.17 14.38 2,186 204,219
Cumulative 12/05/93 4.17 14.38 2,186 204,219

S/W Requirements Analysis 4.91 42.21 6,415 599,320
Cumulative 5/03/94 9.07 36.59 8,601 803,539

Preliminary Design 6.29 87.08 13,237 1,236,568
Cumulative 11/10/94 15.36 143.67 21,838 2,040,107

Detailed Design 7.23 146.06 22,201 2,074,013
Cumulative 6/17/95 22.59 289.73 44,038 4,114,120

Code & CSU Test 8.49 228.69 34,760 3,247,362
Cumulative 3/04/96 31.08 51q.41 78,799 7,361,482

CSC Integrate & Test 8.49 273.04 41,503 3,877,218
Cumulative 11/17/96 39.57 791.46 120,302 11,238,699

CSCI Test 0.94 31.40 4,772 445,834
Cumulative 12/16/96 40.51 822.85 125,074 11,684,534

System Integrate Thru OT&E 5ý77 190.14 28,901 2,699,979
Cumulative 6./08/97 46.28 1,012.99 153,975 14,384,513

Maintenance / Op Support 0.00 0.00 0 0
C.mulative 6/08/97 46.28 1,012.99 153,975 14,384,513

USAF F49650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expire3: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page 4

149

_............ _-_- _ -__ __ -. _..u __--- iu em . m. - .. __2

SEER-SnM (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project : Toot Case 7/31/93
CSCI CSCI 3 4:21:04 PM

Quick Estimate

Schedule Months 39.59
Effort Months 633.97
Bass Vear Cost 9,002.32K
Constraint MIN TIME
Phases Included REQ + FSI + STE

USAII F49650--92-C0004 Gov-r USE ONLY: USAF EMPLOYEE USE ONLY~
License expires: 3/31/1994

Copyright(C) 1988-93 Galorath Associates, Inc. All Rights Reserved. Page I

ip

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project : Test Case 7/31/93
CSCI :CSCI 3 4:21:04 PM

Inputs

Least Likely Most

+ EFFECTIVE LINES 45,000 45,000 45,000

- New Lines of Code 45,000 45,000 45,000
+ PRE-EXISTS, NOT DESIGNED FOR REUSE 0 0 0

- Prm-existing lines of code 0 0 0
- Lines to be deleted in pre-exstg 0 0 0
- Redesign required 5.00% 1.0.00% 40.001
- Reimplementation required 1.00% 5.00% 20.00%
- Retest required 10.00% 40.00% 100.00%

+ PRE-EXISTS, DESIGNED FOR REUSE 0 0 0
- COMPLEXITY VHi- VHi VHi+
+ PERSONNEL CAPABILITIES & EXPERIENCE Low- Nom Hi-

* - Analyst Capabilities Low Nom Hi
- Analyst's Application Experience Nom- Nom Nom+
- Programmer Capabilities Low Nom Hi
- Programmer's Language Experience Low- Nor Hli
- Host Development System Experience Low- Nom Hi
- Target System Experience Low- Nom Hi
- Practices & Methods Experience Low- Nom Hi

+ DEVELOPMENT SUPPORT ENVIRONMENT Low+ Nom Nom
- Modern Development Practices Use Nom- Nom Nom+
- Automated Tools Use Low Nom Nom
- Logon thru Hardcopy Turnaround VLo Low+ Hi
- Terminal Response Time Low- Hi- Hi
- Multiple Site Development Nom Nom Nom
- Resource Dedication Nom Nom Nom
- Resource and Support Location Non Nom Now
- Host System Volatility Nom Now Now
- Practices & Methods Volatility Nom Num Nom

+ PRODUCT DEVELOPMENT REQUIREMENTS Nom Now Hi
- Requirements Volatility (Change) Nom Nom Hi
- Specification Level - Roliability Nom Nom Hi
- Test Level Nor Nom Hi
- Quality Assurance Level Nom N4oM Hi
- Rehost from Development to Target Noa: Ili VIli+

+ PRODUCT REUSABILITY REQUIREMENTS
- Reusability Level Required Nom Nom Nom
-- Software Impacted by Reuse 0.00% 0.00% 0.00%

+ DEVELOPMENT ENVIRONMENT COMPLEXITY Nom- Nom Nnm+
- Language Type (complexity) Nom No= Vili
- Host Develop. System Complexity Nom Nom Nom
- Application Class Complexity Nom- Nom Nsm+
- Practices & Procedures Complexity Nom Nom Nmo

+ TARGET ENVIRONMENT Nom Nom+ Hi-
- Spccial Display iquirmnznta Ui• 11i ¶n~i
- Memory Constraints Hi- Hi Hii-
-Time Constraints Nom Nomi Ili-

Real Time Code Nom Now+ Hi
- Target System Complexity Nom NoA Nom
- Target System Volatility Hi- Hti Hi+
- Security Requirements Nom Nmo Nom

+ SCHEDULE

USAF F43650-92-C0004 GOV'T USE ONLY: USAF EMPLOYEE USE ONLY
License expires: 3/31/1994

Copyriqht(C) i908-93 Za.orath Associates, rnc. All Rights Reserved. Page 2

151.

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Version 3.21
Project Test Case 7/31/93
CSCI CSCI 3 4:21:04 PM

111put s

Least Likely Most
- -- --

- Required Schedule (Calendar Mos) 0.CO
- Start Date for Requirements Phase 7/31/93
- Base Monetary Ye4r 1991

+ STAFFING
- Maximum Staffing Rate Per Year 0.0
- Maximum Total Staff Available 0.0
- Maximum Effort Availanle (PMos) 0.00
- Forced Overstaffing Nom

- Probability 50.00%
+ S/W REQUIREMENTS Z'UALYSIS

- Requirements Complete @ Contract Low
- Requirements Definition Formality Nom Nom H3
- Requirements Effort After Baseline YES

+ S/W TO 3/W INTEGRATION
- CSCIs Concurrently Integrating 2
- Integration Organizations Involved 0
- External Interfaces Amonn CSCIs 0

+ S/W TO H/W INTEGRATION
- Hardware Integration Level Nom No- 1 Nom
- Unique Hardware Interfaces 0

+ OTHER ADD-ONS
+ SOFTWARE MAINTENANCE

- Years of Maintenance 0
- Separate Sites 1
- Maintenance 1rowth Over Life 23.00%
- Personnel Differences Low Nom- Nom
- Development Environment Differences Nam Kom Nom+
- AnnuAl Change Rat. 11.00%
- Mai,, Ain Total System YES

,+ ESTIMATE TO COMPLrTE
+ AVERAGE PERSONNEL COSTS 14,200

USAF P49650-92-C00O4 GuV'T USE ONLY: USAE F.MPOyIlE USE ONLY
License expiren: 3/11/1994

Capyriqht(C) 19f16-93 Galorath Associates, nc:. All Rights IReservwd. Pane I

... 2

- 044.

SzER-.SEM (TM) Software Schedule, Cost & Risk Estimation Vcrsion 3.21
Project Test Case 1/31/93
C5C• CSCI 3 4:21:04 PM

Activity

Schedule Person Person
Activity Months Months Hours Cost

System Concept 0.00 0.00 0 0I
Cumulative 0.00 0.00 0 0

Sys i Requirements Design 3.56 9.00 1,368 127 807
cumulative 11/16/93 3.56 9.00 1,35a 127,807

s/W R•equirements Analysis 4.20 2C.41 4,015 375,075
Cu'milative)/2./94 7.76 35.41 5,383 502,882

Preliminary Design 5.38 54.50 8,284 773,886
Cumwulative 9/04/94 13.14 89.91 13,667 1,276,768

Detailed Devign 6.18 91.41 13,894 1,297,988
Cumulative 3/12/95 19.32 181.32 27,561 2,574,757

Code & CSU Test 7.26 143.12 21,754 2,032,310
C' ulative 10/1i','95 26.58 324.44 49,315 4,607,066

C5C Integrate & Test 7.26 170.38 25,974 2,426,495
Cumulative 5/26/96 33.84 495.32 75,289 7,033,561

CSCI Test 0.81 19.65 2,98, 279,018
k.wIaulative 6/19/96 34.65 514.97 78,275 7,312,571

Syttem Integrate Itru 0T&E' 4.94 119.C0 18,087 1,689,739
Cumulatjivei 11117/96 39.59 633.97 96,363 9,002,A18

Maintenance / Old .1upport 0.00 0.00 0 0
Cumule tiv* 11/17/9(39.59 633.97 96,363 9,002,318

USAF F496'0-92-C0004 GOV'T USE ONLY: US&F EMPLOYEE ISE ONLY
License expires: 3/31/1994

Copyright(C) '88-93 Galorath Associates. Tnc. All Rights Reserved. Page 4

153

i .. ~l~•z • ••¢ £hWM ••"A•JM~mk.A•z •

Bibli ography

1. Boehm, Barry W. Software Engineering Economics. Englewood Cliffs NJ:
Prentice.-Hal' Inc., 1981.

2 --.- . and Philip N. Papaccio. "Understanding and Controlling Software
Costs," IEEE Transactions cn Software Engineering. 14: 1462 - 1477 (October

3. Ourada, Capt Gerald L. Software Cost Estimating Models: A Calibration.
Valiation. and Compari son. MS Thesis, AFIT/GSS/LSY/91 0-11. School of
Systems and Logistics, Air Force Institute of Technology, Wright-Pattro F
OH, Decem-ber 1991 (AD-A246677).

4. Gurner, Capt Robert B. A Comparative Study of the Reliabillity of Function
Point Analysis in Software Develorpmernt Effort Estimation Models. MVS Thesis,
AFITIGCAJLSYI9I S-2. School of Systems and L~ogistics, Air Force Institute of
Technology, Wright-Patterson AFB OH, September 1991 (AD-A244179).

5. Daly, Capt Bryan A. A Comparison of Software Schedule Estimators. MVS
Thesis, AFIT/GCN/LSQ/905-1. School of Systems and Logistics, Air Force
Institute of Techn -.logy, Wright-Potterson AFB OH, September 1990
(AD-A229532).

6-. 1IT Research Institute. Tces.t Case Study: Estimating the. Cost of Ada
SoftwareDev.e!o.mimt. Lanham MD: April 1989.

i. Office of the Assistant Secretary, Washington DC. Memorandum: Air Force
Software ~Estimating Models. ALMAJCOM-FOA/CV, Direct Reporting Unit
Commanders, arid Air Force Program Executive Officers, I11 May 1992.

8. Stewart, Rodn ey D. and Richard M_ Wyskida. Cost Estimator's Reference
Manual. New York NY:.John Wiley & Sons, Inc., 1987.

9. Analytic Sciences Corporation, The. The, AFSC Cost Estimatina Handbook.
Reading MA: prepared for USAF, Air Force Systems Command (AFSC), 1986.

10. Department of Defense. Military Standard. Defense Syte Software
Developm~ent. DoD-STD-2167A. Washington DC: GPO, 29 February 1988.

11 . Schwenke, Robert S. 01, s handout, COST 291, Introduction t Cost
* [Analysis. School of Logistic.; and Acquisition Management, Air Force Institute of

Technology, Wright-Pallerson AFB 0H, Summer Short Quarter 1992.

164

12. SASET. Version 3.0, IBM, disk. Computer software tutorial. Martin
Marietta Corporation, Denver CO, 1990.

13. Ferens, Daniel V. "New Perspectives in Software Logistics Support,"
Logistics Spectrum, 4-8 (Spring 1992).

14. Putnam, Lawrence H. Measures for Excellence: Reliable Software on Time,
Within Budget. Englewood Cliffs NJ: Prentice-Hall Inc., 1992.

15. Schlender, Brenton R. "How to Break the Software Logjam," Fortune. 120:
100-108 (September 1989).

16. Brooks, Frederick P. Jr. The Mythical Man-Month. Menlo Park CA:
Addison-Wesley, 1975.

17.--. "No Silver Bullet: Essence and Accidents of Software Engineering,"
Computer, 10-19 (April 1987).

18. Huff, Karen E. et al. "Quantitative Models for Managing Software
"Development Processes," Software Engineering Journal, 17-23 (January 1986).

J 1 19. SEER User's Manual, Galorath Associates Incorpo- ated, Los Angeles CA.

_Jj March 1991.

20. Kile, Raymond L. REVIC Software Cost Estimating Model User's Manual,
version 9.), April 1991.

- I 21. Symons, Charles R. Software Sizingq and Estimating: MK II FPA (Function
Point Anly.sjs.. Chichester, England: John Wiley & Sons, Ltd., 1991.

22. Ferens, Daniel V. and Robert B. Gurner. "An Evaluation of Three Function
Point Models for Estimation of Software Effort," NAECON Conference, May 1992.

23. Bruce, Phillip and Sam M. Pederson. The Software Development Project:
Planni,,n and Mana ement. New York NY: John Wiley & Sons, inc., 1982.

24. i "vis, Alan M. et al. "A Strategy for Comparing Alternative Software
Development Life Cycle Models," IEEE Transactions on Software Engineering.
14:1453-1461 (October 1988).

25. Rook, Paul. "Controlling Software Projects," Software Engineering Journal,
7-16 (January 1986).

155

nra' m a • L. .. e C....... .1 i.i ". |. J....i"

26. Silver, Dr. Aaron et al. SASET User's Guide, Version Number 2.0,
Publication R-0330-90-2, Naval Center for Cost Analysis, Department of the
Navy, Washington DC: February 1990.

27. General Electric Company. PRICE-S Reference Manual. Moorestown NJ:
GE-Price Systems, December 1989.

28. ------ The Central Equations of the PRICE Software Cost Model.
Moorestown NJ: GE-Price Systems, undated.

29. Maness, Richard. Senior Software Engineer, Martin Marietta Corporation,
Denver CO. Telephone interviews. 4 May through 29 July 1993.

30. Otte, James. Software Engineer, PRICE Systems, Dayton OH. Personal
interview. 23 June 1993.

31. Otte, James. Class handout, IMGT 677, Quantitative Management of
Software. School of Logistics and Acquisition Management, Air Force Institute
of Teuhnology, Wright-Patterson AFB OH, Fall Qua, ter 1992.

32. McRitchie, Karen. Software Technician, SEER Technologies Division,
Galorath Associates, Inc., Los Angeles CA. Telephone interview. 3 July 1993.
33. Gallora'h, Daniel. SEER-SEM Model developer. SEER Technologies
Division, Gaiorath Associates, Inc., Los Angeles CA. Facsimile transmission,

28 July 1993.

34. Kile, Raymond. REVIC Model Developer. Telephone interview. 28 June
through 29 July 1993.

35. Otte, James. Software Engineer, PRICE Systems, Dayton OH. Untitled

internal report regarding relationship between PRICE-S and checklists
completed by the Software Engineering In, titute. Undated.

36. Lewis, Richard. Software Technician, SEER Technologies Division,
Galorsth Associa. , Inc., Los Angeles CA. Telephone interview. 9 July 1993.

37. SEER User's Manual, SEER Technologies Division, Galorath Associates
Incorporated, Los Angeles CA. November 1992.

38. Greve, Alan R., and others. The REVIC Advisor (REVAD): An 'Expert
System Preprocessor to a Parametric, oftware Cost Estimating Model. Defense
Logistics Agency, Cameron Station VA, September 1991.

156

39. Fugate, Carol. Software Technician, PRICE Systems, Dayton OH.
Telephone interview. 30 July 1993.

40. Rowland, Sydney. A Comparative Analysis of the GE PRICE-S and the CE!
System-4 Cost Estimating Models. Wright-Patterson AFB OH: ASDIYTFF, May
1992.

157

n Z"

VITA

Captain George A. Coggins (Andy) was born on 28 May 1965 in Okinawa,

Japan. He graduated from high school in Jacksonville, Arkansas in 1983 and

received the degree of Bachelor of Science from the United States Air Force

AcadL.my in 1987. After graduation, he served five years as an Audit Team

Leader a- the Area Audit Office at Kirtland AFB, New Mexico. Captain Coggins

then entered the School of Logistics and Acquisition Management, Air Force

Institute of Technology, in May 1992.

Permanent Address: 607 Caribbean Way
Niceville, FL 32578

158

VITA

Captain Roy C. Russell (Chris) was born on 4 July 1966 in Ada,

Oklahoma. He graduated from Peoria High School, Arizona in 1984 and

received the degree of Bachelor of Science from the United States Air Force

Academy in 1988. After graduation, he served four years as an Audit Team

Leader at the Area Audit Office at Cannon AFB, New Mexico. He then entered

the School of Logistics and Acquisition Management, Air Foi.ce Institute of

Technology, in May 1992.

Permanent Address: 7620 West Beryl Ave.
Peoria, ,Z 85345

1W

159

REPORT DOCUMENTATION PAGE OBNo. 0104-0188

Public re~ortingr burdenflor thi rcIec-tion of infoermation is "xmate tc iver~qe I hour pe pr. !eiKr-. ncludinrq thf! time for r-iriwin-) inftrU.rTIO,n %var~rhnq arstn s,ýt fur'..
gathering and mnaintfaininng the data needed, and COMoleting and inevinewnq 'Me olleciion of informa~tion iend c,)mment% regarding this burden estirn.ntv or my othpr a~bect -f tmn",
co!lection of information. incluoing suggestions for reducing this ti~rdi- to OVashingtoir Headquarters Services. O,recToiate for Inforntiton Oorý.r.~rors ~na ifnC,-S. 1215 JefFers-
Dannftigfiway, Suite Q204. Arlington, VA 22202-4302. anrito the Offi. o f Managem~ent aind ifrdget, iaperworit Reduction Prolntt (070-088.Olftif)shington. OC 20503t

1. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3.RPR YEAND DATES COVERED
September 1993 _1 Master' s Thesis_______

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SOFTWARE COST ESTIMATING MODELS: A COM.PARATIV STUDY OF
W1HAT TH MODELS ESTIMATE

6. AUTHOR(S)
George A. Coggins, Captain, USAF
Roy C. Russell, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology REPORT NUMBER

WPAFB OHl 45433-6583 AFIT/GCA/1_AS/93S-4

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10J.SPONWORING /MON IYORING

Air 1'orce Cos5t Analysis Agency AGENCY REPORT NUMBER

John B. Donald
1111 Jefferbon Davis Hwy, Suite 403
Arlinigton VA 22202

11. SUPPL.EMENTARY NOTES

12a. DISTRIBUTION IfAVAILABILITY STATEMENIT -j12b. DISTRIUIUTION CODE

Approved for public release; distribution unlimnited~

13.ABSTRACT (Maximum200wurds)

This effort developed a consolidated documient which highlighto_ and e-_xom~ ris
differences in def~ini~tio~ns, assumxptionis, and mnet~hodoio)giEýs used by the REVIle,
SAShr, PRICE1>S, arnd ShEER-SMI cost mo~del1s. The following research questions were
investigated: (1) What differe'ic-:s: exist between the cost models? (2) How do these
difflerences impact the reo;ulting esthii-1.0!3? (3) To what degree can we explain arid
adjust for known differences; between the cost m1odels?

Seven specific areas were addressedl: (1) software developnent phases, (2)
developmuent activities and cost element,_, ('3) sour.ce lines of code and language
differences, (4) Ik.ey model tribUtes and Rouy cost. drivers, (5) implications of

projct sizeý on- 11K)el. outp r., (6) iiivoct of schedule corapresoinad xe:-.os
and \(7) distinctive charact._ -istics of the(- rciKxicl data base_-.

A hypothetical.bo ii :.o-.st case wa.s: iicvcloped to determine Lf users could
explain -nd a~djust. for known differences. It is the researchers' opinion t~hat t:.he
undcrlyinj'qua~~n and mod~el assumpt ion;,-; are so diss:iinilar that objectivE!
nornrliziation efforts are virtually im[possi~b1.e. for thIe averaqe! model user..

14. SUJBJFCT' TERMS 15 NdUMBER 01: PAGiES

Cost Estimnate)s Cost Mo~del2S, .1oft:xware (Com1puteorsE), Comparison., 173
Plodel's16. PRICE COD6E ,

1. L SECURITEY CLASSIFICATION1 SIECUR11 :CLASSWFICArIN 19 SCCURITY CLASSUI1CATION 20. IMITATIONJ OF ABSTRACT
0F11R1I10IIT OF THIS PJAGI Of' ABSTRACT

Unc Lassiffiedýc jjJuc &sit::- iTied j rIc Lia.,siftc I lIi im i t..dx

NSN 1540-01.10-2O5500 t)Idicd ' ffn2)d (0ev 2 tWI)
i'Inr. i,Ihod fry 'NIl .ini I ili. i

AFIT Control NumberAFIT/GCA/LAS/93S-4

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaires to: DEPARTMENT OF THE
AIR FORCE. AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT
PATr'ERSON AFB 01 45433-7765

i. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been rescarchcd (or
contracted) by your organization or another agency if ART had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency
received by virtue of AFIT performing the research. Please estimate what this research would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had been done iu-house.

Man Years

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significancc

5. Comments

Name and Grade Organization

Position or Title Address

S. . . ., , , i iI I I III I

